Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 15(726): eadg8105, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091410

RESUMEN

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of people in the Americas and across the world, leading to considerable morbidity and mortality. Current treatment options, benznidazole (BNZ) and nifurtimox, offer limited efficacy and often lead to adverse side effects because of long treatment durations. Better treatment options are therefore urgently required. Here, we describe a pyrrolopyrimidine series, identified through phenotypic screening, that offers an opportunity to improve on current treatments. In vitro cell-based washout assays demonstrate that compounds in the series are incapable of killing all parasites; however, combining these pyrrolopyrimidines with a subefficacious dose of BNZ can clear all parasites in vitro after 5 days. These findings were replicated in a clinically predictive in vivo model of chronic Chagas disease, where 5 days of treatment with the combination was sufficient to prevent parasite relapse. Comprehensive mechanism of action studies, supported by ligand-structure modeling, show that compounds from this pyrrolopyrimidine series inhibit the Qi active site of T. cruzi cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Knowledge of the molecular target enabled a cascade of assays to be assembled to evaluate selectivity over the human cytochrome b homolog. As a result, a highly selective and efficacious lead compound was identified. The combination of our lead compound with BNZ rapidly clears T. cruzi parasites, both in vitro and in vivo, and shows great potential to overcome key issues associated with currently available treatments.


Asunto(s)
Enfermedad de Chagas , Parásitos , Tripanocidas , Trypanosoma cruzi , Animales , Humanos , Citocromos b , Tripanocidas/efectos adversos , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/inducido químicamente , Enfermedad de Chagas/parasitología
2.
Brain ; 140(10): 2530-2540, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28969370

RESUMEN

Mitochondrial disorders are genetically determined metabolic diseases due to a biochemical deficiency of the respiratory chain. Given that multi-system involvement and disease progression are common features of mitochondrial disorders they carry substantial morbidity and mortality. Despite this, no disease-modifying treatments exist with clear clinical benefits, and the current best management of mitochondrial disease is supportive. Several therapeutic strategies for mitochondrial disorders are now at a mature preclinical stage. Some are making the transition into early-phase patient trials, but the lack of validated biomarkers of disease progression presents a challenge when developing new therapies for patients. This update discusses current biomarkers of mitochondrial disease progression including metabolomics, circulating serum markers, exercise physiology, and both structural and functional imaging. We discuss the advantages and disadvantages of each approach, and consider emerging techniques with a potential role in trials of new therapies.


Asunto(s)
Biomarcadores/metabolismo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/metabolismo , Citocinas/sangre , Progresión de la Enfermedad , Humanos , Metabolómica , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...