Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JMIR Med Inform ; 11: e45496, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37490312

RESUMEN

Background: The COVID-19 pandemic has spurred large-scale, interinstitutional research efforts. To enable these efforts, researchers must agree on data set definitions that not only cover all elements relevant to the respective medical specialty but also are syntactically and semantically interoperable. Therefore, the German Corona Consensus (GECCO) data set was developed as a harmonized, interoperable collection of the most relevant data elements for COVID-19-related patient research. As the GECCO data set is a compact core data set comprising data across all medical fields, the focused research within particular medical domains demands the definition of extension modules that include data elements that are the most relevant to the research performed in those individual medical specialties. Objective: We aimed to (1) specify a workflow for the development of interoperable data set definitions that involves close collaboration between medical experts and information scientists and (2) apply the workflow to develop data set definitions that include data elements that are the most relevant to COVID-19-related patient research regarding immunization, pediatrics, and cardiology. Methods: We developed a workflow to create data set definitions that were (1) content-wise as relevant as possible to a specific field of study and (2) universally usable across computer systems, institutions, and countries (ie, interoperable). We then gathered medical experts from 3 specialties-infectious diseases (with a focus on immunization), pediatrics, and cardiology-to select data elements that were the most relevant to COVID-19-related patient research in the respective specialty. We mapped the data elements to international standardized vocabularies and created data exchange specifications, using Health Level Seven International (HL7) Fast Healthcare Interoperability Resources (FHIR). All steps were performed in close interdisciplinary collaboration with medical domain experts and medical information specialists. Profiles and vocabulary mappings were syntactically and semantically validated in a 2-stage process. Results: We created GECCO extension modules for the immunization, pediatrics, and cardiology domains according to pandemic-related requests. The data elements included in each module were selected, according to the developed consensus-based workflow, by medical experts from these specialties to ensure that the contents aligned with their research needs. We defined data set specifications for 48 immunization, 150 pediatrics, and 52 cardiology data elements that complement the GECCO core data set. We created and published implementation guides, example implementations, and data set annotations for each extension module. Conclusions: The GECCO extension modules, which contain data elements that are the most relevant to COVID-19-related patient research on infectious diseases (with a focus on immunization), pediatrics, and cardiology, were defined in an interdisciplinary, iterative, consensus-based workflow that may serve as a blueprint for developing further data set definitions. The GECCO extension modules provide standardized and harmonized definitions of specialty-related data sets that can help enable interinstitutional and cross-country COVID-19 research in these specialties.

2.
Biomed Mater ; 14(2): 024101, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30524033

RESUMEN

In biomaterial development, the design of material surfaces that mimic the extra-cellular matrix (ECM) in order to achieve favorable cellular instruction is rather challenging. Collagen-type IV (Col-IV), the major scaffolding component of Basement Membranes (BM), a specialized ECM with multiple biological functions, has the propensity to form networks by self-assembly and supports adhesion of cells such as endothelial cells or stem cells. The preparation of biomimetic Col-IV network-like layers to direct cell responses is difficult. We hypothesize that the morphology of the layer, and especially the density of the available adhesion sites, regulates the cellular adhesion to the layer. The Langmuir monolayer technique allows for preparation of thin layers with precisely controlled packing density at the air-water (A-W) interface. Transferring these layers onto cell culture substrates using the Langmuir-Schäfer (LS) technique should therefore provide a pathway for preparation of BM mimicking layers with controlled cell adherence properties. In situ characterization using ellipsometry and polarization modulation-infrared reflection absorption spectroscopy of Col-IV layer during compression at the A-W interface reveal that there is linear increase of surface molecule concentration with negligible orientational changes up to a surface pressure of 25 mN m-1. Smooth and homogeneous Col-IV network-like layers are successfully transferred by LS method at 15 mN m-1 onto poly(ethylene terephthalate) (PET), which is a common substrate for cell culture. In contrast, the organization of Col-IV on PET prepared by the traditionally employed solution deposition method results in rather inhomogeneous layers with the appearance of aggregates and multilayers. Progressive increase in the number of early adherent mesenchymal stem cells (MSCs) after 24 h by controlling the areal Col-IV density by LS transfer at 10, 15 and 20 mN m-1 on PET is shown. The LS method offers the possibility to control protein characteristics on biomaterial surfaces such as molecular density and thereby, modulate cell responses.


Asunto(s)
Materiales Biocompatibles/química , Técnicas de Cultivo de Célula , Colágeno Tipo IV/química , Células Madre/citología , Tejido Adiposo , Biomimética , Adhesión Celular , Colágeno Tipo I/química , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Microscopía de Fuerza Atómica , Tereftalatos Polietilenos/química , Refractometría , Propiedades de Superficie , Humectabilidad
3.
Chemphyschem ; 19(16): 2078-2084, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29683553

RESUMEN

The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10±1% or 21±1% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of σmax,app =1.2±0.1 and 33.3±0.1 MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems.

4.
J Mater Chem B ; 5(35): 7415-7425, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32264191

RESUMEN

Fine tuning of the substrate properties to modulate the function of mesenchymal stem cells (MSCs) has emerged as an attractive strategy to optimize their therapeutic potential. In the context of the mechanotransduction process, the conformational change of integrin (integrin activation) plays a critical role in perceiving and transmitting various signals. In this study, polymeric cell culture inserts with defined bottom roughness were fabricated as a model system for cell cultivation. We showed that the conformational change of integrin and its downstream signaling cascade of human adipose-derived mesenchymal stem cells (hADSCs) could be modulated by the curvature of the cell-material interface. The curvature of the substrate surface with a roughness in the size range of a single cell could strongly increase the high-affinity ß1 integrin level of hADSCs without alteration of the total ß1 integrin level. Further, the integrin downstream FAK/ERK and Rho/ROCK pathways were activated and resulted in upregulated VEGF secretion of hADSCs. A conditioned medium on such a surface exhibited a strong pro-angiogenic effect, with an increased formation of the tubular structure, a higher migration velocity of endothelial cells and an enhanced blood vessel density in an ex vivo hen's egg test-chorioallantoic membrane (HET-CAM). These results highlighted the clinical potential to manipulate the topographic features of the cell culture substrate, whereby to regulate integrin affinity states and further control MSC functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...