Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35043182

RESUMEN

The potato tuber is the main nutrient supply and reproductive organ; however, tuber sprouting can reduce its commercial value. Snakin-2 (StSN2) was first reported as an antimicrobial peptide that positively regulates potato disease resistance. Our recent study suggested StSN2 overexpression inhibited sprout growth, while the sprouting process was accelerated in StSN2 RNAi lines. Cytoplasmic glyceraldehyde-3- phosphate dehydrogenase 1 (StGAPC1) was identified as a candidate protein that interacts with StSN2 by coimmunoprecipitation/mass spectrometry (CoIP/MS) experiments. Here, we report that the expression levels of StSN2 and StGAPC1 decreased during sprouting compared with dormancy. Coexpression of StSN2 and StGAPC1 in bud eyes and apical buds was verified by immunofluorescence analysis of paraffin sections. In addition, interaction of StSN2 and StGAPC1 was confirmed by yeast two-hybrid, coimmunoprecipitation and split luciferase complementation assays. Overexpression of StGAPC1 depressed sprout growth, which is similar to the function of StSN2, and StSN2- and StGAPC1-overexpressing lines showed decreased glucose, fructose and galactose content. The interaction of StSN2 and StGAPC1 enhanced StGAPC1 activity and decreased its oxidative modification to inhibit sprout growth. Our results suggest that StSN2 plays a regulatory role in tuber sprout growth through interaction with StGAPC1.

2.
J Agric Food Chem ; 69(6): 1852-1863, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33550805

RESUMEN

Stevia (Stevia rebaudiana Bertoni) possesses substantial value for its unique sweet compounds-steviol glycosides (SGs). In the metabolic glycosylation grid of SGs, SrUGT91D2 has been shown to catalyze formation of 1,2-ß-d-glucoside linkages at the C13- and C19-positions and play a crucial role in the synthesis of SGs, including the formation of stevioside (ST), rebaudioside E (RE), and rebaudioside D (RD). However, the key residues of the SrUGT91D2 enzyme and how SrUGT91D2 affects the accumulation of SGs in S. rebaudiana remain unclear. In the present study, cloning and functional analysis of full-length SrUGT91D2 gene sequences were performed in 10 different S. rebaudiana genotypes with divergent SG compositions. After sequence analysis, it was found that most of the sequences of this gene (more than 50%) in each genotype were consistent with the UGT91D2e_No.5 allele, which has been reported to exert catalytic activity on 1,2-ß-d-glucoside. Moreover, six variants (UGT91D2e_No.5, SrUGT91D2-11-14, SrUGT91D2-110, SrUGT91D2-023, SrUGT91D2-N01, and SrUGT91D2-N04) of this gene were obtained, and their activities were identified. Although there were some differences among these variants, the only type of mutation was partial base substitution at a very low level. In addition, the expression analysis of SrUGT91D2 in each genotype showed that the expression level of the gene was significantly different among genotypes, and a significant positive correlation was found between the content of RD (which was closely influenced by SrUGT91D2) and the expression level of SrUGT91D2 in each genotype (correlation coefficient = 0.91). Thus, it was indicated that SrUGT91D2 was relatively conserved in S. rebaudiana, and the differential effect of SrUGT91D2 on the accumulation of related SGs mainly derived from its expression level. Furthermore, based on homologous modeling and molecular docking analysis, T84, T144, A194, S284, E285, V286, G365, E369, R404, and G409 were predicted to be key residues in the glucosylation of SGs by SrUGT91D2. After site-mutation and enzyme assays, it was confirmed that T84, T144, R404, A194, and G409 are the key residues in the SrUGT91D2 protein, especially T144 and G409. This work provided valuable information for understanding the structure-activity relationship of the SrUGT91D2 protein and the molecular mechanism of SG accumulation in stevia.


Asunto(s)
Diterpenos de Tipo Kaurano , Stevia , Glucósidos , Glicósidos , Glicosiltransferasas/genética , Simulación del Acoplamiento Molecular , Hojas de la Planta , Stevia/genética , Uridina Difosfato
3.
BMC Genomics ; 21(1): 794, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33187479

RESUMEN

BACKGROUND: Stevia rebaudiana (Bertoni) is considered one of the most valuable plants because of the steviol glycosides (SGs) that can be extracted from its leaves. Glycosyltransferases (GTs), which can transfer sugar moieties from activated sugar donors onto saccharide and nonsaccharide acceptors, are widely distributed in the genome of S. rebaudiana and play important roles in the synthesis of steviol glycosides. RESULTS: Six stevia genotypes with significantly different concentrations of SGs were obtained by induction through various mutagenic methods, and the contents of seven glycosides (stevioboside, Reb B, ST, Reb A, Reb F, Reb D and Reb M) in their leaves were considerably different. Then, NGS and single-molecule real-time (SMRT) sequencing were combined to analyse leaf tissue from these six different genotypes to generate a full-length transcriptome of S. rebaudiana. Two phylogenetic trees of glycosyltransferases (SrUGTs) were constructed by the neighbour-joining method and successfully predicted the functions of SrUGTs involved in SG biosynthesis. With further insight into glycosyltransferases (SrUGTs) involved in SG biosynthesis, the weighted gene co-expression network analysis (WGCNA) method was used to characterize the relationships between SrUGTs and SGs, and forty-four potential SrUGTs were finally obtained, including SrUGT85C2, SrUGT74G1, SrUGT76G1 and SrUGT91D2, which have already been reported to be involved in the glucosylation of steviol glycosides, illustrating the reliability of our results. CONCLUSION: Combined with the results obtained by previous studies and those of this work, we systematically characterized glycosyltransferases in S. rebaudiana and forty-four candidate SrUGTs involved in the glycosylation of steviol glucosides were obtained. Moreover, the full-length transcriptome obtained in this study will provide valuable support for further research investigating S. rebaudiana.


Asunto(s)
Diterpenos de Tipo Kaurano , Stevia , Glicosiltransferasas/genética , Filogenia , Hojas de la Planta/genética , Reproducibilidad de los Resultados , Stevia/genética
4.
Food Chem ; 325: 126875, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32387993

RESUMEN

Brassinosteroids (BRs), a new class of steroid hormones, are involved in the regulation of plant cell elongation and seed germination. Nevertheless, the molecular mechanism of the effect of BRs on tuber sprouting remains largely unknown. In this study, quantitative phosphoproteomics was employed to investigate the protein phosphorylation changes in sprouting induced by BRs. Our results showed that BRs accelerated the conversion of starch into soluble sugar in tubers. A functional enrichment cluster analysis suggested that the "amino acid metabolism pathway" was upregulated and that "plant hormone signal transduction and protein export" were downregulated. BR treatment also changed the phosphorylation of proteins involved in the BR, ABA, starch and sugar signal transduction pathways, such as serine/threonine-protein kinase (BSK), 14-3-3, alpha-glucan water dikinase (GWD), sucrose-phosphate synthase (SPS), sucrose synthase (SS) and alkaline/neutral invertase (A/N-INV). These results shed more light on the pattern of protein phosphorylation in BR promoting potato sprouting.

5.
Int J Mol Sci ; 21(7)2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268484

RESUMEN

Alligator weed is reported to have a strong ability to adapt to potassium deficiency (LK) stress. Leaves are the primary organs responsible for photosynthesis of plants. However, quantitative proteomic changes in alligator weed leaves in response to LK stress are largely unknown. In this study, we investigated the physiological and proteomic changes in leaves of alligator weed under LK stress. We found that chloroplast and mesophyll cell contents in palisade tissue increased, and that the total chlorophyll content, superoxide dismutase (SOD) activity and net photosynthetic rate (PN) increased after 15 day of LK treatment, but the soluble protein content decreased. Quantitative proteomic analysis suggested that a total of 119 proteins were differentially abundant proteins (DAPs). KEGG analysis suggested that most represented DAPs were associated with secondary metabolism, the stress response, photosynthesis, protein synthesis, and degradation pathway. The proteomic results were verified using parallel reaction monitoring mass spectrometry (PRM-MS) analysis and quantitative real-time PCR (qRT-PCR)assays. Additional research suggested that overexpression of cationic peroxidase 1 of alligator weed (ApCPX1) in tobacco increased LK tolerance. The seed germination rate, peroxidase (POD) activity, and K+ content increased, and the hydrogen peroxide (H2O2) content decreased in the three transgenic tobacco lines after LK stress. The number of root hairs of the transgenic line was significantly higher than that of WT, and net K efflux rates were severely decreased in the transgenic line under LK stress. These results confirmed that ApCPX1 played positive roles in low-K+ signal sensing. These results provide valuable information on the adaptive mechanisms in leaves of alligator weed under LK stress and will help identify vital functional genes to apply to the molecular breeding of LK-tolerant plants in the future.


Asunto(s)
Peroxidasas/metabolismo , Hojas de la Planta/metabolismo , Malezas/metabolismo , Deficiencia de Potasio/metabolismo , Proteoma , Proteómica , Estrés Fisiológico , Animales , Cromatografía Líquida de Alta Presión , Biología Computacional/métodos , Ontología de Genes , Fenotipo , Proteómica/métodos , Espectrometría de Masas en Tándem
6.
Sci Rep ; 9(1): 17366, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31758026

RESUMEN

Alligator weed is reported to have a strong ability to adapt to potassium deficiency stress. Proteomic changes in response to this stress are largely unknown in alligator weed seedlings. In this study, we performed physiological and comparative proteomics of alligator weed seedlings between normal growth (CK) and potassium deficiency (LK) stress using 2-DE techniques, including root, stem and leaf tissues. Seedling height, soluble sugar content, PGK activity and H2O2 contents were significantly altered after 15 d of LK treatment. A total of 206 differentially expressed proteins (DEPs) were identified. There were 72 DEPs in the root, 79 in the stem, and 55 in the leaves. The proteomic results were verified using western blot and qRT-PCR assays. The most represented KEGG pathway was "Carbohydrate and energy metabolism" in the three samples. The "Protein degradation" pathway only existed in the stem and root, and the "Cell cycle" pathway only existed in the root. Protein-protein interaction analysis demonstrated that the interacting proteins detected were the most common in the stem, with 18 proteins. Our study highlights protein changes in alligator weed seedling under LK stress and provides new information on the comprehensive analysis of the protein network in plant potassium nutrition.


Asunto(s)
Amaranthaceae/fisiología , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Potasio/metabolismo , Estrés Fisiológico/fisiología , Amaranthaceae/metabolismo , Enfermedades de las Plantas/etiología , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Tallos de la Planta/química , Tallos de la Planta/efectos de los fármacos , Potasio/farmacología , Proteoma/análisis , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Proteómica/métodos , Plantones
7.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626112

RESUMEN

The macronutrient potassium is essential to plant growth, development and stress response. Alligator weed (Alternanthera philoxeroides) has a high tolerance to potassium deficiency (LK) stress. The stem is the primary organ responsible for transporting molecules from the underground root system to the aboveground parts of the plant. However, proteomic changes in response to LK stress are largely unknown in alligator weed stems. In this study, we investigated the physiological and proteomic changes in alligator weed stems under LK stress. First, the chlorophyll and soluble protein content and SOD and POD activity were significantly altered after 15 days of LK treatment. The quantitative proteomic analysis suggested that a total of 296 proteins were differentially abundant proteins (DAPs). The functional annotation analysis revealed that LK stress elicited complex proteomic alterations that were involved in oxidative phosphorylation, plant-pathogen interactions, glycolysis/gluconeogenesis, sugar metabolism, and transport in stems. The subcellular locations analysis suggested 104 proteins showed chloroplastic localization, 81 proteins showed cytoplasmic localization and 40 showed nuclear localization. The protein⁻protein interaction analysis revealed that 56 proteins were involved in the interaction network, including 9 proteins involved in the ribosome network and 9 in the oxidative phosphorylation network. Additionally, the expressed changes of 5 DAPs were similar between the proteomic quantification analysis and the PRM-MS analysis, and the expression levels of eight genes that encode DAPs were further verified using an RT-qPCR analysis. These results provide valuable information on the adaptive mechanisms in alligator weed stems under LK stress and facilitate the development of efficient strategies for genetically engineering potassium-tolerant crops.


Asunto(s)
Amaranthaceae/fisiología , Tallos de la Planta/metabolismo , Malezas/metabolismo , Potasio/farmacología , Proteoma/metabolismo , Estrés Fisiológico/efectos de los fármacos , Amaranthaceae/efectos de los fármacos , Ontología de Genes , Modelos Biológicos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Malezas/efectos de los fármacos , Dominios Proteicos , Mapas de Interacción de Proteínas , Proteómica , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...