Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 951: 175257, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122029

RESUMEN

Over the last century, many peatlands in northern Europe have been drained for forestry. Forest management with different harvesting regimes has a significant impact on soil water status and consequently on greenhouse gas emissions from peat soils. In this paper, we have used the process-based JSBACH-HIMMELI model to simulate the effects of alternative harvesting regimes, namely non-harvested (NH), selection harvesting (SH; 70 % of stem volume harvested) and clear-cutting (CC; 100 % of stem volume harvested), on soil CH4 and CO2 fluxes in peatland forests. We modified the model to account for the specific characteristics of peatland forests, where the water level (WL) is generally low and is regulated by the amount of aboveground vegetation through evapotranspiration. Multi-year measurements before and after the forest harvesting in a nutrient-rich peatland forest in southern Finland were used to constrain the model. The results showed that the modified model was able to reproduce the seasonal dynamics of water level, soil CH4 and soil CO2 fluxes under alternative harvesting regimes with reasonable accuracy. The averaged Pearson's r (Pearson correlation coefficient) and RMSE (Root Mean Square Error) between the model and the measurement were 0.75 and 7.3 cm for WL, 0.75 and 0.23 nmol m-2 s-1 for soil CH4 flux, 0.73 and 0. 88 µmol m-2 s-1 for soil CO2 flux. The modified model successfully reproduced soil CH4 uptake at both NH and SH sites and soil CH4 emission at the CC site, as observed in the measurements. Our study showed that increasing harvesting intensity (NH â†’ SH â†’ CC) in the model increased soil CH4 emission and decreased soil CO2 emission on an annual basis, but the magnitude of the decreased soil CO2 emission was much larger than that of the increased soil CH4 emission when comparing their global warming potentials. Therefore, in the short term as in our study (first three years after the harvest), the climate impacts of the soil GHG was reduced more in CC than in SH, which yet can be fundamentally different when considering in the long term.

2.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-37756632

RESUMEN

Continuous cover forestry (CCF) has gained interest as an alternative to even-aged management particularly on drained peatland forests. However, relatively little is known about the physiological response of suppressed trees when larger trees are removed as a part of CCF practices. Consequently, studies concentrating on process-level modeling of the response of trees to selection harvesting are also rare. Here, we compared, modeled and measured harvest response of previously suppressed Norway spruce (Picea abies) trees to a selection harvest. We quantified the harvest response by collecting Norway spruce tree-ring samples in a drained peatland forest site and measuring the change in stable carbon and oxygen isotopic ratios of wood formed during 2010-20, including five post-harvest years. The measured isotopic ratios were compared with ecosystem-level process model predictions for ${\kern0em }^{13}$C discrimination and ${\kern0em }^{18}$O leaf water enrichment. We found that the model predicted similar but lower harvest response than the measurements. Furthermore, accounting for mesophyll conductance was important for capturing the variation in ${\kern0em }^{13}$C discrimination. In addition, we performed sensitivity analysis on the model, which suggests that the modeled ${\kern0em }^{13}$C discrimination is sensitive to parameters related to CO2 transport through stomata to the mesophyll.


Asunto(s)
Carbono , Picea , Picea/fisiología , Ecosistema , Isótopos de Carbono/análisis , Isótopos de Oxígeno/análisis , Bosques , Árboles , Noruega
4.
Sci Rep ; 13(1): 15510, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758807

RESUMEN

Land-based mitigation measures are needed to achieve climate targets. One option is the mitigation of currently high greenhouse gas (GHG) emissions of nutrient-rich drained peatland forest soils. Continuous cover forestry (CCF) has been proposed as a measure to manage this GHG emission source; however, its emission reduction potential and impact on timber production at regional and national scales have not been quantified. To quantify the potential emission reduction, we simulated four management scenarios for Finnish forests: (i) The replacement of clear-cutting by selection harvesting on nutrient-rich drained peatlands (CCF) and (ii) the current forest management regime (BAU), and both at two harvest levels, namely (i) the mean annual harvesting (2016-2018) and (ii) the maximum sustainable yield. The simulations were conducted at the stand scale with a forest simulator (MELA) coupled with a hydrological model (SpaFHy), soil C model (Yasso07) and empirical GHG exchange models. Simulations showed that the management scenario that avoided clear-cutting on nutrient-rich drained peatlands (i.e. CCF) produced approximately 1 Tg CO2 eq. higher carbon sinks annually compared with BAU at equal harvest level for Finland. This emission reduction can be attributed to the maintenance of a higher biomass sink and to the mitigation of soil emissions from nutrient-rich drained peatland sites.

5.
Sci Total Environ ; 901: 165421, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37474057

RESUMEN

Managed boreal peatlands are widespread and economically important, but they are a large source of greenhouse gases (GHGs). Peatland GHG emissions are related to soil water-table level (WT), which controls the vertical distribution of aerobic and anaerobic processes and, consequently, sinks and sources of GHGs in soils. On forested peatlands, selection harvesting reduces stand evapotranspiration and it has been suggested that the resulting WT rise decreases soil net emissions, while the tree growth is maintained. We monitored soil concentrations of CO2, CH4, N2O and O2 by depth down to 80 cm, and CO2 and CH4 fluxes from soil in two nutrient-rich Norway spruce dominated peatlands in Southern Finland to examine the responses of soil GHG dynamics to WT rise. Selection harvesting raised WT by 14 cm on both sites, on average, mean WTs of the monitoring period being 73 cm for unharvested control and 59 cm for selection harvest. All soil gas concentrations were associated with proximity to WT. Both CH4 and CO2 showed remarkable vertical concentration gradients, with high values in the deepest layer, likely due to slow gas transfer in wet peat. CH4 was efficiently consumed in peat layers near and above WT where it reached sub-atmospheric concentrations, indicating sustained oxidation of CH4 from both atmospheric and deeper soil origins also after harvesting. Based on soil gas concentration data, surface peat (top 25/30 cm layer) contributed most to the soil-atmosphere CO2 fluxes and harvesting slightly increased the CO2 source in deeper soil (below 45/50 cm), which could explain the small CO2 flux differences between treatments. N2O production occurred above WT, and it was unaffected by harvesting. Overall, the WT rise obtained with selection harvesting was not sufficient to reduce soil GHG emissions, but additional hydrological regulation would have been needed.

6.
Glob Chang Biol ; 25(5): 1852-1867, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30767385

RESUMEN

Globally 40-70 Pg of carbon (C) are stored in coarse woody debris on the forest floor. Climate change may reduce the function of this stock as a C sink in the future due to increasing temperature. However, current knowledge on the drivers of wood decomposition is inadequate for detailed predictions. To define the factors that control wood respiration rate of Norway spruce and to produce a model that adequately describes the decomposition process of this species as a function of time, we used an unprecedentedly diverse analytical approach, which included measurements of respiration, fungal community sequencing, N2 fixation rate, nifH copy number, 14 C-dating as well as N%, δ13 C and C% values of wood. Our results suggest that climate change will accelerate C flux from deadwood in boreal conditions, due to the observed strong temperature dependency of deadwood respiration. At the research site, the annual C flux from deadwood would increase by 27% from the current 117 g C/kg wood with the projected climate warming (RCP4.5). The second most important control on respiration rate was the stage of wood decomposition; at early stages of decomposition low nitrogen content and low wood moisture limited fungal activity while reduced wood resource quality decreased the respiration rate at the final stages of decomposition. Wood decomposition process was best described by a Sigmoidal model, where after 116 years of wood decomposition mass loss of 95% was reached. Our results on deadwood decomposition are important for C budget calculations in ecosystem and climate change models. We observed for the first time that the temperature dependency of N2 fixation, which has a major role at providing N for wood-inhabiting fungi, was not constant but varied between wood density classes due to source supply and wood quality. This has significant consequences on projecting N2 fixation rates for deadwood in changing climate.


Asunto(s)
Ciclo del Carbono , Bosques , Hongos/fisiología , Picea , Temperatura , Madera/metabolismo , Carbono/análisis , Carbono/metabolismo , Cambio Climático , Hongos/clasificación , Hongos/genética , Nitrógeno/análisis , Nitrógeno/metabolismo , Noruega , Madera/química , Madera/microbiología
7.
Sci Total Environ ; 653: 995-1004, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30759623

RESUMEN

Biological fixation of atmospheric nitrogen (N2) by bryophyte-associated cyanobacteria is an important source of plant-available N in the boreal biome. Information on the factors that drive biological N2 fixation (BNF) rates is needed in order to understand the N dynamics of forests under a changing climate. We assessed the potential of several cryptogam species (the feather mosses Hylocomium splendens and Pleurozium schreberi, a group of Dicranum bryophytes, two liverworts, and Cladina lichens) to serve as associates of cyanobacteria or other N2-fixing bacteria (diazotrophs) using acetylene reduction assay (ARA). We tested the hypotheses that the legacy of chronic atmospheric N deposition reduces BNF in the three bryophyte species, sampled from 12 coniferous forests located at latitudes 60-68° N in Finland. In addition, we tested the effect of moisture and temperature on BNF. All species studied showed a BNF signal in the north, with the highest rates in feather mosses. In moss samples taken along the north-south gradient with an increasing N bulk deposition from 0.8 to 4.4 kg ha-1 year-1, we found a clear decrease in BNF in both feather mosses and Dicranum group. BNF turned off at N deposition of 3-4 kg ha-1 year-1. Inorganic N (NH4-N + NO3-N) best predicted the BNF rate among regression models with different forms of N deposition as explanatory variables. However, in southern spruce stands, tree canopies modified the N in throughfall so that dissolved organic N (DON) leached from canopies compensated for inorganic N retained therein. Here, both DON and inorganic N negatively affected BNF in H. splendens. In laboratory experiments, BNF increased with increasing temperature and moisture. Our results suggest that even relatively low N deposition suppresses BNF in bryophyte-associated diazotrophs. Further, BNF could increase in northern low-deposition areas, especially if climate warming leads to moister conditions, as predicted.


Asunto(s)
Briófitas/metabolismo , Bosques , Fijación del Nitrógeno , Nitrógeno/análisis , Monitoreo del Ambiente , Finlandia , Humedad , Lluvia , Temperatura
8.
ISME J ; 11(9): 1964-1974, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28430188

RESUMEN

We investigated the interaction between fungal communities of soil and dead wood substrates. For this, we applied molecular species identification and stable isotope tracking to both soil and decaying wood in an unmanaged boreal Norway spruce-dominated stand. Altogether, we recorded 1990 operational taxonomic units, out of which more than 600 were shared by both substrates and 589 were found to exclusively inhabit wood. On average the soil was more species-rich than the decaying wood, but the species richness in dead wood increased monotonically along the decay gradient, reaching the same species richness and community composition as soil in the late stages. Decaying logs at all decay stages locally influenced the fungal communities from soil, some fungal species occurring in soil only under decaying wood. Stable isotope analyses suggest that mycorrhizal species colonising dead wood in the late decay stages actively transfer nitrogen and carbon between soil and host plants. Most importantly, Piloderma sphaerosporum and Tylospora sp. mycorrhizal species were highly abundant in decayed wood. Soil- and wood-inhabiting fungal communities interact at all decay phases of wood that has important implications in fungal community dynamics and thus nutrient transportation.


Asunto(s)
Hongos/aislamiento & purificación , Picea/microbiología , Microbiología del Suelo , Madera/microbiología , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Micorrizas/clasificación , Micorrizas/genética , Micorrizas/aislamiento & purificación , Micorrizas/metabolismo , Noruega , Suelo/química
9.
Front Plant Sci ; 5: 264, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24982664

RESUMEN

We studied the photosynthetic activity of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst) in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 1-3 times per week. We began by measuring shoots present in late winter (i.e., March 2013) before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only. We analyzed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence. The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 2013-2014 was unusually mild and similar to future conditions predicted by global climate models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.

10.
Front Microbiol ; 5: 230, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904544

RESUMEN

Hundreds of wood-inhabiting fungal species are now threatened, principally due to a lack of dead wood in intensively managed forests, but the consequences of reduced fungal diversity on ecosystem functioning are not known. Several experiments have shown that primary productivity is negatively affected by a loss of species, but the effects of microbial diversity on decomposition are less studied. We studied the relationship between fungal diversity and the in vitro decomposition rate of slightly, moderately and heavily decayed Picea abies wood with indigenous fungal communities that were diluted to examine the influence of diversity. Respiration rate, wood-degrading hydrolytic enzymes and fungal community structure were assessed during a 16-week incubation. The number of observed OTUs in DGGE was used as a measure of fungal diversity. Respiration rate increased between early- and late-decay stages. Reduced fungal diversity was associated with lower respiration rates during intermediate stages of decay, but no effects were detected at later stages. The activity of hydrolytic enzymes varied among decay stages and fungal dilutions. Our results suggest that functioning of highly diverse communities of the late-decay stage were more resistant to the loss of diversity than less diverse communities of early decomposers. This indicates the accumulation of functional redundancy during the succession of the fungal community in decomposing substrates.

11.
FEMS Microbiol Ecol ; 81(2): 494-505, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22458543

RESUMEN

Decaying wood plays an important role in forest biodiversity, nutrient cycling and carbon balance. Community structure of wood-inhabiting fungi changes with mass loss of wood, but the relationship between substrate quality and decomposers is poorly understood. This limits the extent to which these ecosystem services can be effectively managed. We studied the fungal community and physico-chemical quality (stage of decay, dimensions, density, moisture, C : N ratio, lignin and water or ethanol extractives) of 543 Norway spruce logs in five unmanaged boreal forest sites of southern Finland. Fungi were identified using denaturing gradient gel electrophoresis and sequencing of DNA extracted directly from wood samples. Macroscopic fruiting bodies were also recorded. Results showed a fungal community succession with decreasing wood density and C : N ratio, and increasing moisture and lignin content. Fungal diversity peaked in the most decayed substrates. Ascomycetes typically colonized recently fallen wood. Brown-rot fungi preferred the intermediate decay stages. White-rot fungi represented approximately one-fifth of sequenced species in all decay phases excluding the final phase, where ectomycorrhizal (ECM) fungi became dominant. Lignin content of logs with white-rot fungi was low, and ECM fungi were associated with substrates containing abundant nitrogen. Macroscopic fruiting bodies were observed for only a small number of species detected with molecular techniques.


Asunto(s)
Biodiversidad , Hongos/crecimiento & desarrollo , Picea/microbiología , Madera/microbiología , ADN de Hongos/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Finlandia , Hongos/genética , Lignina/análisis , Árboles/microbiología , Madera/química
12.
Environ Monit Assess ; 158(1-4): 67-76, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18830800

RESUMEN

We studied within-site spatial variation of the carbon stock in the organic layer of boreal forest soil. A total of 1,006 soil samples were taken in ten forest stands (five Scots pine stands and five Norway spruce stands). Our results indicate that the spatial autocorrelation disappears at a distance of 75-225 cm. This spatial autocorrelation should be taken into account in the sampling design by locating the sampling points at adequate intervals. With a sample size of over 20-30 samples per site, additional soil samples do not notably improve the precision of the site mean estimate. An adequate sample size is dependent on the purpose of sampling and on the site-specific soil variation. Our results on the dependence between sample size and precision of the mean estimates can be applied in designing efficient soil monitoring in boreal coniferous forests.


Asunto(s)
Carbono/análisis , Monitoreo del Ambiente/métodos , Suelo/análisis , Árboles , Cambio Climático
13.
Environ Pollut ; 152(1): 82-91, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17597269

RESUMEN

The effect of nitrogen on biomass production, shoot elongation and relative density of the mosses Pleurozium schreberi, Hylocomium splendens and Dicranum polysetum was studied in a chamber experiment. Monocultures were exposed to 10 N levels ranging from 0.02 to 7.35 g N m(-2) during a 90-day period. All the growth responses were unimodal, but the species showed differences in the shape parameters of the curves. Hylocomium and Pleurozium achieved optimum biomass production at a lower N level than Dicranum. Pleurozium had the highest biomass production per tissue N concentration. Tolerance to N was the widest in Dicranum, whereas Hylocomium had the narrowest tolerance. Dicranum retained N less efficiently from precipitation than the other two species, which explained its deviating response. All species translocated some N from parent to new shoots. The results emphasize that the individual responses of bryophytes to N should be known when species are used as bioindicators.


Asunto(s)
Briófitas/crecimiento & desarrollo , Contaminantes Ambientales/metabolismo , Nitrógeno/metabolismo , Biomasa , Monitoreo del Ambiente/métodos , Isótopos de Nitrógeno/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...