Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 2137, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034246

RESUMEN

Beaches around the world continuously adjust to daily and seasonal changes in wave and tide conditions, which are themselves changing over longer time-scales. Different approaches to predict multi-year shoreline evolution have been implemented; however, robust and reliable predictions of shoreline evolution are still problematic even in short-term scenarios (shorter than decadal). Here we show results of a modelling competition, where 19 numerical models (a mix of established shoreline models and machine learning techniques) were tested using data collected for Tairua beach, New Zealand with 18 years of daily averaged alongshore shoreline position and beach rotation (orientation) data obtained from a camera system. In general, traditional shoreline models and machine learning techniques were able to reproduce shoreline changes during the calibration period (1999-2014) for normal conditions but some of the model struggled to predict extreme and fast oscillations. During the forecast period (unseen data, 2014-2017), both approaches showed a decrease in models' capability to predict the shoreline position. This was more evident for some of the machine learning algorithms. A model ensemble performed better than individual models and enables assessment of uncertainties in model architecture. Research-coordinated approaches (e.g., modelling competitions) can fuel advances in predictive capabilities and provide a forum for the discussion about the advantages/disadvantages of available models.

2.
Nat Commun ; 10(1): 205, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30643133

RESUMEN

Wind-generated ocean waves drive important coastal processes that determine flooding and erosion. Ocean warming has been one factor affecting waves globally. Most studies have focused on studying parameters such as wave heights, but a systematic, global and long-term signal of climate change in global wave behavior remains undetermined. Here we show that the global wave power, which is the transport of the energy transferred from the wind into sea-surface motion, has increased globally (0.4% per year) and by ocean basins since 1948. We also find long-term correlations and statistical dependency with sea surface temperatures, globally and by ocean sub-basins, particularly between the tropical Atlantic temperatures and the wave power in high south latitudes, the most energetic region globally. Results indicate the upper-ocean warming, a consequence of anthropogenic global warming, is changing the global wave climate, making waves stronger. This identifies wave power as a potentially valuable climate change indicator.

3.
PLoS One ; 12(11): e0187011, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29095841

RESUMEN

As the world's population grows to a projected 11.2 billion by 2100, the number of people living in low-lying areas exposed to coastal hazards is projected to increase. Critical infrastructure and valuable assets continue to be placed in vulnerable areas, and in recent years, millions of people have been displaced by natural hazards. Impacts from coastal hazards depend on the number of people, value of assets, and presence of critical resources in harm's way. Risks related to natural hazards are determined by a complex interaction between physical hazards, the vulnerability of a society or social-ecological system and its exposure to such hazards. Moreover, these risks are amplified by challenging socioeconomic dynamics, including poorly planned urban development, income inequality, and poverty. This study employs a combination of machine learning clustering techniques (Self Organizing Maps and K-Means) and a spatial index, to assess coastal risks in Latin America and the Caribbean (LAC) on a comparative scale. The proposed method meets multiple objectives, including the identification of hotspots and key drivers of coastal risk, and the ability to process large-volume multidimensional and multivariate datasets, effectively reducing sixteen variables related to coastal hazards, geographic exposure, and socioeconomic vulnerability, into a single index. Our results demonstrate that in LAC, more than 500,000 people live in areas where coastal hazards, exposure (of people, assets and ecosystems) and poverty converge, creating the ideal conditions for a perfect storm. Hotspot locations of coastal risk, identified by the proposed Comparative Coastal Risk Index (CCRI), contain more than 300,00 people and include: El Oro, Ecuador; Sinaloa, Mexico; Usulutan, El Salvador; and Chiapas, Mexico. Our results provide important insights into potential adaptation alternatives that could reduce the impacts of future hazards. Effective adaptation options must not only focus on developing coastal defenses, but also on improving practices and policies related to urban development, agricultural land use, and conservation, as well as ameliorating socioeconomic conditions.


Asunto(s)
Desastres , Riesgo , Análisis por Conglomerados , Geografía , América Latina , Clase Social , Indias Occidentales
4.
Sci Rep ; 7(1): 5038, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698633

RESUMEN

Coastal communities throughout the world are exposed to numerous and increasing threats, such as coastal flooding and erosion, saltwater intrusion and wetland degradation. Here, we present the first global-scale analysis of the main drivers of coastal flooding due to large-scale oceanographic factors. Given the large dimensionality of the problem (e.g. spatiotemporal variability in flood magnitude and the relative influence of waves, tides and surge levels), we have performed a computer-based classification to identify geographical areas with homogeneous climates. Results show that 75% of coastal regions around the globe have the potential for very large flooding events with low probabilities (unbounded tails), 82% are tide-dominated, and almost 49% are highly susceptible to increases in flooding frequency due to sea-level rise.

5.
PLoS One ; 10(7): e0133409, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26177285

RESUMEN

This study considers and compares several of the most important factors contributing to coastal flooding in Latin American and the Caribbean (LAC) while accounting for the variations of these factors with location and time. The study assesses the populations, the land areas and the built capital exposed at present and at the middle and end of the 21st century for a set of scenarios that include both climatic and non-climatic drivers. Climatic drivers include global mean sea level, natural modes of climate variability such as El Niño, natural subsidence, and extreme sea levels resulting from the combination of projected local sea-level rise, storm surges and wave setup. Population is the only human-related driver accounted for in the future. Without adaptation, more than 4 million inhabitants will be exposed to flooding from relative sea-level rise by the end of the century, assuming the 8.5 W m-2 trajectory of the Representative Concentration Pathways (RCPs), or RCP8.5. However, the contributions from El Niño events substantially raise the threat in several Pacific-coast countries of the region and sooner than previously anticipated. At the tropical Pacific coastlines, the exposure by the mid-century for an event similar to El Niño 1998 would be comparable to that of the RCP4.5 relative sea-level rise by the end of the century. Furthermore, more than 7.5 million inhabitants, 42,600 km2 and built capital valued at 334 billion USD are currently situated at elevations below the 100-year extreme sea level. With sea levels rising and the population increasing, it is estimated that more than 9 million inhabitants will be exposed by the end of the century for either of the RCPs considered. The spatial distribution of exposure and the comparison of scenarios and timeframes can serve as a guide in future adaptation and risk reduction policies in the region.


Asunto(s)
Cambio Climático , Ecosistema , Inundaciones , Región del Caribe , El Niño Oscilación del Sur , Geografía , América Latina , Factores de Riesgo , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...