Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Alcohol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945280

RESUMEN

While there are numerous brain regions that have been shown to play a role in this AUD in humans and animal models, the central nucleus of the amygdala (CeA) has emerged as a critically important locus mediating binge alcohol consumption. In this study, we sought to understand how relative gene expression of key signaling molecules in the CeA changes during different periods of abstinence following bouts of binge drinking. To test this, we performed drinking in the dark (DID) on two separate cohorts of C57BL/6J mice and collected CeA brain tissue at 1 day (acute) and 7 days (protracted) abstinence after DID. We used qRTPCR to evaluate relative gene expression changes of 25 distinct genes of interest related to G protein-coupled receptors (GPCRs), neuropeptides, ion channel subunits, and enzymes that have been previously implicated in AUD. Our findings show that during acute abstinence CeA punches collected from female mice had upregulated relative mRNA expression of the gamma-aminobutyric acid receptor subunit alpha 2 (Gabra2), and the peptidase, angiotensinase c (Prcp). CeA punches from male mice at the same time point in abstinence had upregulated relative mRNA encoding for neuropeptide-related molecules, neuropeptide Y (Npy) and somatostatin (Sst), as well as the neuropeptide Y receptor Y2 (Npyr2), but downregulated Glutamate ionotropic receptor NMDA type subunit 1 (Grin1). After protracted abstinence, CeA punches collected from female mice had increased mRNA expression of corticotropin releasing hormone (Crh) and Npy. CeA punches collected from male mice at the same timepoint had upregulated relative mRNA expression of Npy2r, Npy, and Sst. Our findings support that there are differences in how the CeA of male and female mice respond to binge-alcohol exposure, highlighting the need to understand the implications of such differences in the context of AUD and binge drinking behavior.

2.
bioRxiv ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38645149

RESUMEN

Background: Binge alcohol drinking is a dangerous pattern of consumption that can contribute to the development of more severe alcohol use disorders (AUDs). Importantly, the rate and severity of AUDs has historically differed between men and women, suggesting that there may be sex differences in the central mechanisms that modulate alcohol (ethanol) consumption. Corticotropin releasing factor (CRF) is a centrally expressed neuropeptide that has been implicated in the modulation of binge-like ethanol intake, and emerging data highlight sex differences in central CRF systems. Methods: In the present report we characterized CRF+ neurocircuitry arising from the central nucleus of the amygdala (CeA) and innervating the lateral hypothalamus (LH) in the modulation of binge-like ethanol intake in male and female mice. Results: Using chemogenetic tools we found that silencing the CRF+ CeA to LH circuit significantly blunted binge-like ethanol intake in male, but not female, mice. Consistently, genetic deletion of CRF from neurons of the CeA blunted ethanol intake exclusively in male mice. Furthermore, pharmacological blockade of the CRF type-1 receptor (CRF1R) in the LH significantly reduced binge-like ethanol intake in male mice only, while CRF2R activation in the LH failed to alter ethanol intake in either sex. Finally, a history of binge-like ethanol drinking blunted CRF mRNA in the CeA regardless of sex. Conclusions: These observations provide novel evidence that CRF+ CeA to LH neurocircuitry modulates binge-like ethanol intake in male, but not female mice, which may provide insight into the mechanisms that guide known sex differences in binge-like ethanol intake.

3.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352404

RESUMEN

Binge alcohol consumption is a major risk factor for developing Alcohol Use Disorder (AUD) and is associated with alcohol-related problems like accidental injury, acute alcohol poisoning, and black-outs. While there are numerous brain regions that have been shown to play a role in this AUD in humans and animal models, the central nucleus of the amygdala (CeA) has emerged as a critically important locus mediating binge alcohol consumption. In this study, we sought to understand how relative gene expression of key signaling molecules in the CeA changes during different periods of abstinence following bouts of binge drinking. To test this, we performed drinking in the dark (DID) on two separate cohorts of C57BL/6J mice and collected CeA brain tissue at one day (acute) and 7 days (protracted) abstinence after DID. We used qRTPCR to evaluate relative gene expression changes of 25 distinct genes of interest related to G protein-coupled receptors (GPCRs), neuropeptides, ion channel subunits, and enzymes that have been previously implicated in AUD. Our findings show that during acute abstinence CeA punches collected from female mice had upregulated relative mRNA expression of the gamma-aminobutyric acid receptor subunit alpha 2 (Gabra2), and the peptidase, angiotensinase c (Prcp). CeA punches from male mice at the same time point in abstinence had upregulated relative mRNA encoding for neuropeptide-related molecules, neuropeptide Y (Npy) and somatostatin (Sst), as well as the neuropeptide Y receptor Y2 (Npyr2) but downregulated, Glutamate ionotropic receptor NMDA type subunit 1 (Grin1). After protracted abstinence CeA punches collected from female mice had increased mRNA expression of corticotropin releasing hormone (Crh) and Npy. While CeA punches collected from male mice at the same timepoint had upregulated relative mRNA expression of Npy2r and downregulated mRNA expression of Gabra2, Grin1 and opioid receptor kappa 1 (Oprk1). Our findings support that there are differences in how the CeA of male and female respond to binge-alcohol exposure, highlighting the need to understand the implications of such differences in the context of AUD and binge drinking behavior.

4.
Physiol Rev ; 103(1): 391-432, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35953269

RESUMEN

The heart is imbued with a vast lymphatic network that is responsible for fluid homeostasis and immune cell trafficking. Disturbances in the forces that regulate microvascular fluid movement can result in myocardial edema, which has profibrotic and proinflammatory consequences and contributes to cardiovascular dysfunction. This review explores the complex relationship between cardiac lymphatics, myocardial edema, and cardiac disease. It covers the revised paradigm of microvascular forces and fluid movement around the capillary as well as the arsenal of preclinical tools and animal models used to model myocardial edema and cardiac disease. Clinical studies of myocardial edema and their prognostic significance are examined in parallel to the recent elegant animal studies discerning the pathophysiological role and therapeutic potential of cardiac lymphatics in different cardiovascular disease models. This review highlights the outstanding questions of interest to both basic scientists and clinicians regarding the roles of cardiac lymphatics in health and disease.


Asunto(s)
Edema Cardíaco , Cardiopatías , Vasos Linfáticos , Animales , Modelos Animales de Enfermedad , Edema Cardíaco/fisiopatología , Cardiopatías/fisiopatología , Vasos Linfáticos/fisiopatología
5.
Sci Rep ; 9(1): 10716, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31341189

RESUMEN

Cardiac cells develop within an elaborate electro-mechanical syncytium that continuously generates and reacts to biophysical force. The complexity of the cellular interactions, hemodynamic stresses, and electrical circuitry within the forming heart present significant challenges for mechanistic research into the cellular dynamics of cardiomyocyte maturation. Simply stated, it is prohibitively difficult to replicate the native electro-mechanical cardiac microenvironment in tissue culture systems favorable to high-resolution cellular/subcellular analysis, and current transgenic models of higher vertebrate heart development are limited in their ability to manipulate and assay the behavior of individual cells. As such, cardiac research currently lacks a simple experimental platform for real-time evaluation of cellular function under conditions that replicate native development. Here we report the design and validation of a rapid, low-cost system for stable in vivo somatic transgenesis that allows for individual cells to be genetically manipulated, tracked, and examined at subcellular resolution within the forming four-chambered heart. This experimental platform has several advantages over current technologies, chief among these being that mosaic cellular perturbations can be conducted without globally altering cardiac function. Consequently, direct analysis of cellular behavior can be interrogated in the absence of the organ level adaptions that often confound data interpretation in germline transgenic model organisms.


Asunto(s)
Corazón/embriología , Mosaicismo , Transducción Genética/métodos , Animales , Células Cultivadas , Embrión de Pollo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Transducción Genética/economía , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...