Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1152597, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37206331

RESUMEN

Avocado (Persea americana Mill.) is a tree crop of great social and economic importance. However, the crop productivity is hindered by fast-spreading diseases, which calls for the search of new biocontrol alternatives to mitigate the impact of avocado phytopathogens. Our objectives were to evaluate the antimicrobial activity of diffusible and volatile organic compounds (VOCs) produced by two avocado rhizobacteria (Bacillus A8a and HA) against phytopathogens Fusarium solani, Fusarium kuroshium, and Phytophthora cinnamomi, and assess their plant growth promoting effect in Arabidopsis thaliana. We found that, in vitro, VOCs emitted by both bacterial strains inhibited mycelial growth of the tested pathogens by at least 20%. Identification of bacterial VOCs by gas chromatography coupled to mass spectrometry (GC-MS) showed a predominance of ketones, alcohols and nitrogenous compounds, previously reported for their antimicrobial activity. Bacterial organic extracts obtained with ethyl acetate significantly reduced mycelial growth of F. solani, F. kuroshium, and P. cinnamomi, the highest inhibition being displayed by those from strain A8a (32, 77, and 100% inhibition, respectively). Tentative identifications carried out by liquid chromatography coupled to accurate mass spectrometry of diffusible metabolites in the bacterial extracts, evidenced the presence of some polyketides such as macrolactins and difficidin, hybrid peptides including bacillaene, and non-ribosomal peptides such as bacilysin, which have also been described in Bacillus spp. for antimicrobial activities. The plant growth regulator indole-3-acetic acid was also identified in the bacterial extracts. In vitro assays showed that VOCs from strain HA and diffusible compounds from strain A8a modified root development and increased fresh weight of A. thaliana. These compounds differentially activated several hormonal signaling pathways involved in development and defense responses in A. thaliana, such as auxin, jasmonic acid (JA) and salicylic acid (SA); genetic analyses suggested that developmental stimulation of the root system architecture by strain A8a was mediated by the auxin signaling pathway. Furthermore, both strains were able to enhance plant growth and decreased the symptoms of Fusarium wilt in A. thaliana when soil-inoculated. Collectively, our results evidence the potential of these two rhizobacterial strains and their metabolites as biocontrol agents of avocado pathogens and as biofertilizers.

2.
Arch Microbiol ; 203(7): 4593-4607, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34160629

RESUMEN

Bark is a permanent surface for microbial colonization at the interface of trees and the surrounding air, but little is known about its microbial communities. We used shotgun metagenomic sequencing to analyze the bark microbiomes of avocado trees from two orchards, and compared one of them to rhizospheric soil. It was shown that the microbial communities of avocado bark have a well-defined taxonomic structure, with consistent patterns of abundance of bacteria, fungi, and archaea, even in trees from two different locations. Bark microbial communities were distinct from rhizospheric soil, although they showed overlap in some taxa. Thus, avocado bark is a well-defined environment, providing niches for specific taxonomic groups, many of which are also found in other aerial plant tissues. The present in-depth characterization of bark microbial communities can form a basis for their future manipulation for agronomical purposes.


Asunto(s)
Biodiversidad , Microbiota , Persea , Corteza de la Planta , Archaea/genética , Bacterias/genética , Hongos/genética , Hongos/fisiología , Metagenómica , Microbiota/genética , Microbiota/fisiología , Persea/microbiología , Corteza de la Planta/microbiología , Microbiología del Suelo
3.
PeerJ ; 8: e10074, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33033663

RESUMEN

BACKGROUND: Alkamides are plant-specific bioactive molecules. They are low molecular weight N-substituted α-unsaturated acyl amides that display biological explicit activities in different organisms from bacteria, fungi, insects to mammals and plants. The acyl chain has been proposed to be biosynthesized from a fatty acid; however, this has not been demonstrated yet. Heliopsis longipes (Asteraceae) accumulates in root a C10 alkamide called affinin in its roots, but not in leaves. The closely related species Heliopsis annua does not produce alkamides. To elucidate the biosynthetic pathway of the alkamides acyl chain, a comparative global gene expression analysis contrasting roots and leaves of both species was performed. METHODS: Transcriptomics analysis allowed to identify genes highly expressed in H. longipes roots, but not in tissues and species that do not accumulate alkamides. The first domain searched was the Ketosynthase (KS) domain. The phylogenetic analysis using sequences of the KS domain of FAS and PKS from different organisms, revealed that KS domains of the differentially expressed transcripts in H. longipes roots and the KS domain found in transcripts of Echinacea purpurea, another alkamides producer species, were grouped together with a high bootstrap value of 100%, sharing great similarity. Among the annotated transcripts, we found some coding for the enzymatic domains KS, AT, ACP, DH, OR and TE, which presented higher expression in H. longipes roots than in leaves. The expression level of these genes was further evaluated by qRT-PCR. All unigenes tested showed higher expression in H. longipes roots than in any the other samples. Based on this and considering that the acyl chain of affinin presents unsaturated bonds at even C numbers, we propose a new putative biosynthesis pathway mediated by a four modules polyketide synthase (PKS). RESULTS: The global gene expression analysis led to the selection of a set of candidate genes involved in the biosynthesis of the acyl chain of affinin, suggesting that it may be performed by a non-iterative, partially reductive, four module type I PKS complex (PKS alk) previously thought to be absent from the plant kingdom.

4.
PeerJ ; 8: e8345, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32002327

RESUMEN

BACKGROUND: In Mexico, coffee leaf rust (CLR) is the main disease that affects the Arabica coffee crop. In this study, the local response of two Mexican cultivars of Coffea arabica (Oro Azteca and Garnica) in the early stages of Hemileia vastatrix infection was evaluated. METHODS: We quantified the development of fungal structures in locally-infected leaf disks from both cultivars, using qRT-PCR to measure the relative expression of two pathogenesis recognition genes (CaNDR1 and CaNBS-LRR) and three genes associated with the salicylic acid (SA)-related pathway (CaNPR1, CaPR1, and CaPR5). RESULTS: Resistance of the cv. Oro Azteca was significantly higher than that of the cv. Garnica, with 8.2% and 53.3% haustorial detection, respectively. In addition, the non-race specific disease resistance gene (CaNDR1), a key gene for the pathogen recognition, as well as the genes associated with SA, CaNPR1, CaPR1, and CaPR5, presented an increased expression in response to infection by H. vastatrix in cv. Oro Azteca if comparing with cv. Garnica. Our results suggest that Oro Azteca's defense mechanisms could involve early recognition of CLR by NDR1 and the subsequent activation of the SA signaling pathway.

5.
Front Microbiol ; 11: 574110, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33510714

RESUMEN

The structure and function of rhizosphere microbial communities are affected by the plant health status. In this study, we investigated the effect of root rot on the avocado rhizosphere microbiome, using 16S rDNA and ITS sequencing. Furthermore, we isolated potential fungal pathogens associated with root rot symptoms and assessed their pathogenic activity on avocado. We found that root rot did not affect species richness, diversity or community structure, but induced changes in the relative abundance of several microbial taxa. Root rot increased the proportion of Pseudomonadales and Burkholderiales in the rhizosphere but reduced that of Actinobacteria, Bacillus spp. and Rhizobiales. An increase in putative opportunistic fungal pathogens was also detected in the roots of symptomatic trees; the potential pathogenicity of Mortierella sp., Fusarium spp., Lasiodiplodia sp. and Scytalidium sp., is reported for the first time for the State of Veracruz, Mexico. Root rot also potentially modified the predicted functions carried out by rhizobacteria, reducing the proportion of categories linked with the lipid and amino-acid metabolisms whilst promoting those associated with quorum sensing, virulence, and antibiotic resistance. Altogether, our results could help identifying microbial taxa associated to the disease causal agents and direct the selection of plant growth-promoting bacteria for the development of biocontrol microbial consortia.

6.
Proc Natl Acad Sci U S A ; 116(34): 17081-17089, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31387975

RESUMEN

The avocado, Persea americana, is a fruit crop of immense importance to Mexican agriculture with an increasing demand worldwide. Avocado lies in the anciently diverged magnoliid clade of angiosperms, which has a controversial phylogenetic position relative to eudicots and monocots. We sequenced the nuclear genomes of the Mexican avocado race, P. americana var. drymifolia, and the most commercially popular hybrid cultivar, Hass, and anchored the latter to chromosomes using a genetic map. Resequencing of Guatemalan and West Indian varieties revealed that ∼39% of the Hass genome represents Guatemalan source regions introgressed into a Mexican race background. Some introgressed blocks are extremely large, consistent with the recent origin of the cultivar. The avocado lineage experienced 2 lineage-specific polyploidy events during its evolutionary history. Although gene-tree/species-tree phylogenomic results are inconclusive, syntenic ortholog distances to other species place avocado as sister to the enormous monocot and eudicot lineages combined. Duplicate genes descending from polyploidy augmented the transcription factor diversity of avocado, while tandem duplicates enhanced the secondary metabolism of the species. Phenylpropanoid biosynthesis, known to be elicited by Colletotrichum (anthracnose) pathogen infection in avocado, is one enriched function among tandems. Furthermore, transcriptome data show that tandem duplicates are significantly up- and down-regulated in response to anthracnose infection, whereas polyploid duplicates are not, supporting the general view that collections of tandem duplicates contribute evolutionarily recent "tuning knobs" in the genome adaptive landscapes of given species.


Asunto(s)
Colletotrichum/fisiología , ADN Intergénico , Introgresión Genética , Genoma de Planta , Interacciones Huésped-Patógeno/genética , Magnoliopsida , Persea , Filogenia , Enfermedades de las Plantas , Duplicación de Gen , Magnoliopsida/genética , Magnoliopsida/microbiología , Persea/genética , Persea/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
7.
Microbiol Res ; 219: 74-83, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30642469

RESUMEN

Recent studies showed that bacterial volatile organic compounds (VOCs) play an important role in the suppression of phytopathogens. The ability of VOCs produced by avocado (Persea americana Mill.) rhizobacteria to suppress the growth of common avocado pathogens was therefore investigated. We evaluated the antifungal activity of VOCs emitted by avocado rhizobacteria in a first screening against Fusarium solani, and in subsequent antagonism assays against Fusarium sp. associated with Kuroshio shot hole borer, Colletotrichum gloeosporioides and Phytophthora cinnamomi, responsible for Fusarium dieback, anthracnosis and Phytophthora root rot in avocado, respectively. We also analyzed the composition of the bacterial volatile profiles by solid phase microextraction (SPME) gas chromatography coupled to mass spectrometry (GC-MS). Seven isolates, belonging to the bacterial genera Bacillus and Pseudomonas, reduced the mycelial growth of F. solani with inhibition percentages higher than 20%. Isolate HA, related to Bacillus amyloliquefaciens, significantly reduced the mycelial growth of Fusarium sp. and C. gloeosporioides and the mycelium density of P. cinnamomi. Isolates SO and SJJ, also members of the genus Bacillus, reduced Fusarium sp. mycelial growth and induced morphological alterations of fungal hyphae whilst isolate HB, close to B. mycoides, inhibited C. gloeosporioides. The analysis of the volatile profiles revealed the presence of ketones, pyrazines and sulfur-containing compounds, previously reported with antifungal activity. Altogether, our results support the potential of avocado rhizobacteria to act as biocontrol agents of avocado fungal pathogens and emphasize the importance of Bacillus spp. for the control of emerging avocado diseases such as Fusarium dieback.


Asunto(s)
Antifúngicos/farmacología , Bacillus/metabolismo , Agentes de Control Biológico/farmacología , Colletotrichum/efectos de los fármacos , Fusarium/efectos de los fármacos , Persea/microbiología , Phytophthora/efectos de los fármacos , Pseudomonas/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Animales , Antifúngicos/metabolismo , Agentes de Control Biológico/metabolismo , Escarabajos/microbiología , Compuestos Orgánicos Volátiles/metabolismo
8.
PLoS One ; 13(3): e0194665, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29558512

RESUMEN

Rhizobacteria associated with crops constitute an important source of potentially beneficial microorganisms with plant growth promoting activity or antagonistic effects against phytopathogens. In this study, we evaluated the plant growth promoting activity of 11 bacterial isolates that were obtained from the rhizosphere of healthy avocado trees and from that of avocado trees having survived root rot infestations. Seven bacterial isolates, belonging to the genera Bacillus, Pseudomonas and Arthrobacter, promoted in vitro growth of Arabidopsis thaliana. These isolates were then tested for antagonistic activity against Phytophthora cinnamomi, in direct dual culture assays. Two of those rhizobacterial isolates, obtained from symptomatic-declining trees, displayed antagonistic activity. Isolate A8a, which is closely related to Bacillus acidiceler, was also able to inhibit P. cinnamomi growth in vitro by 76% through the production of volatile compounds. Solid phase microextraction (SPME) and analysis by gas chromatography coupled with mass spectrometry (GC-MS) allowed to tentatively identify the main volatiles emitted by isolate A8a as 2,3,5-trimethylpyrazine, 6,10-dimethyl-5,9-undecadien-2-one and 3-amino-1,3-oxazolidin-2-one. These volatile compounds have been reported to show antifungal activity when produced by other bacterial isolates. These results confirm the significance of rhizobacteria and suggest that these bacteria could be used for biocontrol of soil borne oomycetes through their volatiles emissions.


Asunto(s)
Antibiosis/fisiología , Persea/microbiología , Phytophthora/efectos de los fármacos , Rhizobiaceae/fisiología , Rizosfera , Compuestos Orgánicos Volátiles/farmacología , Antibiosis/efectos de los fármacos , Persea/crecimiento & desarrollo , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Rhizobiaceae/metabolismo , Suelo/química , Microbiología del Suelo , Compuestos Orgánicos Volátiles/metabolismo
9.
Antonie Van Leeuwenhoek ; 111(4): 563-572, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29124466

RESUMEN

Plant rhizobacteria have been successfully used as biocontrol agents against fungal phytopathogens. However, their potential to control two important avocado diseases, namely Fusarium dieback (FD) and Phytophthora root rot (PRR), has been poorly studied. FD is an emerging disease triggered by fungi associated with two ambrosia beetle species (Euwallacea fornicatus species complex), while PRR is caused by Phytophthora cinnamomi, a soil-borne oomycete. In the present work, the antifungal activity of bacteria isolated from avocado rhizosphere was tested in dual culture assays against Fusarium euwallaceae, Graphium euwallaceae and Graphium sp., causal agents of FD, and against P. cinnamomi. In 2015, rhizosphere soil samples of FD infested and non-infested avocado trees were collected from a commercial avocado orchard in Escondido, California. In an initial screening, 72 of the 168 assessed bacterial isolates reduced mycelial growth of F. euwallaceae by up to 46%. Eight bacterial isolates showing inhibition percentages larger than 40% were then selected for further antagonism assays against the other fungal pathogens. Five bacterial isolates, determined by 16S rDNA sequencing to belong to the Bacillus subtilis/Bacillus amyloliquefaciens species complex, successfully inhibited the mycelial growth of both Graphium species by up to 30%. The same isolates and an additional isolate identified as Bacillus mycoides, inhibited the growth of P. cinnamomi by up to 25%. This is the first report of avocado rhizobacteria with antifungal activity against pathogens responsible for FD and PRR in avocado.


Asunto(s)
Ascomicetos/fisiología , Bacillus/aislamiento & purificación , Fusarium/fisiología , Interacciones Microbianas/fisiología , Persea/microbiología , Phytophthora/fisiología , Rizosfera , Animales , Antifúngicos/metabolismo , Bacillus/clasificación , Bacillus/metabolismo , California , Insectos Vectores/microbiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Gorgojos/microbiología
10.
BMC Genomics ; 16: 599, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26268848

RESUMEN

BACKGROUND: Avocado (Persea americana) is an economically important tropical fruit considered to be a good source of fatty acids. Despite its importance, the molecular and cellular characterization of biochemical and developmental processes in avocado is limited due to the lack of transcriptome and genomic information. RESULTS: The transcriptomes of seeds, roots, stems, leaves, aerial buds and flowers were determined using different sequencing platforms. Additionally, the transcriptomes of three different stages of fruit ripening (pre-climacteric, climacteric and post-climacteric) were also analyzed. The analysis of the RNAseqatlas presented here reveals strong differences in gene expression patterns between different organs, especially between root and flower, but also reveals similarities among the gene expression patterns in other organs, such as stem, leaves and aerial buds (vegetative organs) or seed and fruit (storage organs). Important regulators, functional categories, and differentially expressed genes involved in avocado fruit ripening were identified. Additionally, to demonstrate the utility of the avocado gene expression atlas, we investigated the expression patterns of genes implicated in fatty acid metabolism and fruit ripening. CONCLUSIONS: A description of transcriptomic changes occurring during fruit ripening was obtained in Mexican avocado, contributing to a dynamic view of the expression patterns of genes involved in fatty acid biosynthesis and the fruit ripening process.


Asunto(s)
Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Persea/genética , Proteínas de Plantas/genética , Análisis de Secuencia de ARN/métodos , Flores/genética , Flores/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Persea/química , Persea/crecimiento & desarrollo , Persea/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo
11.
Plant Mol Biol ; 86(1-2): 35-50, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24928490

RESUMEN

Soil contamination by hexavalent chromium [Cr(VI) or chromate] due to anthropogenic activities has become an increasingly important environmental problem. To date few studies have been performed to elucidate the signaling networks involved on adaptive responses to (CrVI) toxicity in plants. In this work, we report that depending upon its concentration, Cr(VI) alters in different ways the architecture of the root system in Arabidopsis thaliana seedlings. Low concentrations of Cr (20-40 µM) promoted primary root growth, while concentrations higher than 60 µM Cr repressed growth and increased formation of root hairs, lateral root primordia and adventitious roots. We analyzed global gene expression changes in seedlings grown in media supplied with 20 or 140 µM Cr. The level of 731 transcripts was significantly modified in response to Cr treatment with only five genes common to both Cr concentrations. Interestingly, 23 genes related to iron (Fe) acquisition were up-regulated including IRT1, YSL2, FRO5, BHLH100, BHLH101 and BHLH039 and the master controllers of Fe deficiency responses PYE and BTS were specifically activated in pericycle cells. It was also found that increasing concentration of Cr in the plant correlated with a decrease in Fe content, but increased both acidification of the rhizosphere and activity of the ferric chelate reductase. Supply of Fe to Cr-treated Arabidopsis allowed primary root to resume growth and alleviated toxicity symptoms, indicating that Fe nutrition is a major target of Cr stress in plants. Our results show that low Cr levels are beneficial to plants and that toxic Cr concentrations activate a low-Fe rescue system.


Asunto(s)
Arabidopsis/efectos de los fármacos , Cromatos/toxicidad , Contaminantes del Suelo/toxicidad , Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Homeostasis/efectos de los fármacos , Hierro/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantones/efectos de los fármacos , Plantones/genética , Plantones/fisiología , Transducción de Señal/efectos de los fármacos
12.
BMC Plant Biol ; 14: 69, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24649917

RESUMEN

BACKGROUND: Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. RESULTS: We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. CONCLUSIONS: The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Hidroponía , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas
13.
Mol Plant Microbe Interact ; 27(4): 364-78, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24224532

RESUMEN

Pyocyanin acts as a virulence factor in Pseudomonas aeruginosa, a plant and animal pathogen. In this study, we evaluated the effect of pyocyanin on growth and development of Arabidopsis seedlings. Root inoculation with P. aeruginosa PAO1 strain inhibited primary root growth in wild-type (WT) Arabidopsis seedlings. In contrast, single lasI- and double rhlI-/lasI- mutants of P. aeruginosa defective in pyocyanin production showed decreased root growth inhibition concomitant with an increased phytostimulation. Treatment with pyocyanin modulates root system architecture, inhibiting primary root growth and promoting lateral root and root hair formation without affecting meristem viability or causing cell death. These effects correlated with altered proportions of hydrogen peroxide and superoxide in root tips and with an inhibition of cell division and elongation. Mutant analyses showed that pyocyanin modulation of root growth was likely independent of auxin, cytokinin, and abscisic acid but required ethylene signaling because the Arabidopsis etr1-1, ein2-1, and ein3-1 ethylene-related mutants were less sensitive to pyocyanin-induced root stoppage and reactive oxygen species (ROS) distribution. Our findings suggest that pyocyanin is an important factor modulating the interplay between ROS production and root system architecture by an ethylene-dependent signaling.


Asunto(s)
Arabidopsis/microbiología , Etilenos/metabolismo , Raíces de Plantas/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/metabolismo , División Celular , Regulación Bacteriana de la Expresión Génica/fisiología , Raíces de Plantas/metabolismo , Piocianina/genética , Percepción de Quorum/fisiología , Transducción de Señal/fisiología
14.
PLoS One ; 6(11): e27251, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22076141

RESUMEN

Alkamides are fatty acid amides of wide distribution in plants, structurally related to N-acyl-L-homoserine lactones (AHLs) from Gram-negative bacteria and to N- acylethanolamines (NAEs) from plants and mammals. Global analysis of gene expression changes in Arabidopsis thaliana in response to N-isobutyl decanamide, the most highly active alkamide identified to date, revealed an overrepresentation of defense-responsive transcriptional networks. In particular, genes encoding enzymes for jasmonic acid (JA) biosynthesis increased their expression, which occurred in parallel with JA, nitric oxide (NO) and H2O2 accumulation. The activity of the alkamide to confer resistance against the necrotizing fungus Botrytis cinerea was tested by inoculating Arabidopsis detached leaves with conidiospores and evaluating disease symptoms and fungal proliferation. N-isobutyl decanamide application significantly reduced necrosis caused by the pathogen and inhibited fungal proliferation. Arabidopsis mutants jar1 and coi1 altered in JA signaling and a MAP kinase mutant (mpk6), unlike salicylic acid- (SA) related mutant eds16/sid2-1, were unable to defend from fungal attack even when N-isobutyl decanamide was supplied, indicating that alkamides could modulate some necrotrophic-associated defense responses through JA-dependent and MPK6-regulated signaling pathways. Our results suggest a role of alkamides in plant immunity induction.


Asunto(s)
Arabidopsis/efectos de los fármacos , Botrytis/patogenicidad , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/prevención & control , Reguladores del Crecimiento de las Plantas/metabolismo , Alcamidas Poliinsaturadas/farmacología , Transducción de Señal/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomarcadores/metabolismo , Western Blotting , Perfilación de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Control de Infecciones , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Plant Cell Physiol ; 52(3): 490-508, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21252298

RESUMEN

Serotonin (5-hydroxytryptamine) is a well-known neurotransmitter in mammals and is widely distributed in plants. This compound is synthesized from tryptophan and shares structural similarity with IAA. To date, little is known about the morphological, physiological and molecular responses of plants to serotonin. In this study, we characterized the effects of serotonin on growth and development in Arabidopsis thaliana seedlings. Gas chromatography-mass spectrometry (GC-MS) analysis showed that plants are able to take up serotonin from the growth medium, which coincided with greatly stimulated lateral root development at concentrations from 10 to 160 µM. In contrast, higher doses of serotonin repressed lateral root growth, primary root growth and root hair development, but stimulated adventitious root formation. To investigate the role of serotonin in modulating auxin responses, we performed experiments using transgenic Arabidopsis lines expressing the auxin-responsive marker constructs DR5:uidA, BA3:uidA and HS::AXR3NT-GUS, as well as a variety of Arabidopsis mutants defective at the AUX1, AXR1, AXR2 and AXR4 auxin-related loci. We found that serotonin strongly inhibited both DR5:uidA and BA3:uidA gene expression in primary and adventitious roots and in lateral root primordia. This compound also abolished the effects of IAA or naphthaleneacetic acid on auxin-regulated developmental and genetic responses, indicating an anti-auxin activity in the plant. Mutant analysis further showed that lateral root induction elicited by serotonin was independent of the AUX1 and AXR4 loci but required AXR1 and AXR2. Our results show that serotonin regulates root development probably by acting as a natural auxin inhibitor.


Asunto(s)
Arabidopsis/metabolismo , Ácidos Indolacéticos/antagonistas & inhibidores , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Triptófano/química , Animales , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Mutación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Carácter Cuantitativo Heredable , Plantones/efectos de los fármacos , Plantones/metabolismo , Serotonina/química , Serotonina/metabolismo
16.
Plant Cell Physiol ; 51(10): 1612-26, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20685967

RESUMEN

Alkamides are small bioactive lipid signals with a wide distribution in plants. In this report, the role of nitric oxide (NO) in the alterations induced by N-isobutyl decanamide on the Arabidopsis (Arabidopsis thaliana) root system architecture (RSA) was investigated. We first compared the effects of N-isobutyl decanamide and NO donors sodium nitropruside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) on root morphogenetic processes. Both N-isobutyl decanamide and NO donors modulated RSA in a similar way and in a dose-dependent manner, inhibiting primary root growth and promoting lateral root primordia (LRP) formation. RSA alterations induced by N-isobutyl decanamide correlated with NO accumulation in the primary root tip and in developing lateral roots. Morphogenetic effects of N-isobutyl decanamide decreased when NO scavengers were supplied to alkamide-treated seedlings. N-Isobutyl decanamide-regulated root architectural changes were also investigated in mutants defective in NO biosynthesis, nia1 nia2, and NO signalling, Atnoa1, and in the alkamide-resistant mutant drr1. The nia1 nia2 and Atnoa1 mutants were indistinguishable in primary root growth inhibition by the alkamide when compared with wild-type (WT) seedlings, but showed reduced lateral root responses. The drr1 mutant was less sensitive in both primary root growth inhibition and LRP induction by NO donors than WT seedlings. Detailed DR5:uidA and BA3:uidA marker analysis showed that N-isobutyl decanamide and its interacting signals jasmonic acid and NO act downstream or independently of auxin-responsive gene expression to promote LRP formation. Our results provide compelling evidence that NO is an intermediate in alkamide signaling mediating RSA adjustment in Arabidopsis.


Asunto(s)
Alcanos/farmacología , Amidas/farmacología , Arabidopsis/crecimiento & desarrollo , Óxido Nítrico/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Nitroprusiato/farmacología , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , S-Nitroso-N-Acetilpenicilamina/farmacología
17.
Plant Physiol ; 152(3): 1659-73, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20107026

RESUMEN

Alkamides belong to a class of small lipid signals of wide distribution in plants, which are structurally related to the bacterial quorum-sensing signals N-acyl-l-homoserine lactones. Arabidopsis (Arabidopsis thaliana) seedlings display a number of root developmental responses to alkamides, including primary root growth inhibition and greater formation of lateral roots. To gain insight into the regulatory mechanisms by which these compounds alter plant development, we performed a mutant screen for identifying Arabidopsis mutants that fail to inhibit primary root growth when grown under a high concentration of N-isobutyl decanamide. A recessive N-isobutyl decanamide-resistant mutant (decanamide resistant root [drr1]) was isolated because of its continued primary root growth and reduced lateral root formation in response to this alkamide. Detailed characterization of lateral root primordia development in the wild type and drr1 mutants revealed that DRR1 is required at an early stage of pericycle cell activation to form lateral root primordia in response to both N-isobutyl decanamide and N-decanoyl-l-homoserine lactone, a highly active bacterial quorum-sensing signal. Exogenously supplied auxin similarly inhibited primary root growth and promoted lateral root formation in wild-type and drr1 seedlings, suggesting that alkamides and auxin act by different mechanisms to alter root system architecture. When grown both in vitro and in soil, drr1 mutants showed dramatically increased longevity and reduced hormone- and age-dependent senescence, which were related to reduced lateral root formation when exposed to stimulatory concentrations of jasmonic acid. Taken together, our results provide genetic evidence indicating that alkamides and N-acyl-l-homoserine lactones can be perceived by plants to modulate root architecture and senescence-related processes possibly by interacting with jasmonic acid signaling.


Asunto(s)
Alcanos/farmacología , Amidas/farmacología , Arabidopsis/genética , Raíces de Plantas/crecimiento & desarrollo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Arabidopsis/crecimiento & desarrollo , Ciclopentanos/farmacología , Genes de Plantas , Homoserina/análogos & derivados , Homoserina/farmacología , Ácidos Indolacéticos/farmacología , Mutagénesis Insercional , Mutación , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
18.
Plant Physiol ; 145(4): 1703-13, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17965178

RESUMEN

Alkamides and N-acilethanolamides are a class of lipid compounds related to animal endocannabinoids of wide distribution in plants. We investigated the structural features required for alkamides to regulate plant development by comparing the root responses of Arabidopsis (Arabidopsis thaliana) seedlings to a range of natural and synthetic compounds. The length of the acyl chain and the amide moiety were found to play a crucial role in their biological activity. From the different compounds tested, N-isobutyl decanamide, a small saturated alkamide, was found to be the most active in regulating primary root growth and lateral root formation. Proliferative-promoting activity of alkamide treatment was evidenced by formation of callus-like structures in primary roots, ectopic blades along petioles of rosette leaves, and disorganized tumorous tissue originating from the leaf lamina. Ectopic organ formation by N-isobutyl decanamide treatment was related to altered expression of the cell division marker CycB1:uidA and an enhanced expression of the cytokinin-inducible marker ARR5:uidA both in roots and in shoots. The involvement of cytokinins in mediating the observed activity of alkamides was tested using Arabidopsis mutants lacking one, two, or three of the putative cytokinin receptors CRE1, AHK2, and AHK3. The triple cytokinin receptor mutant was insensitive to N-isobutyl decanamide treatment, showing absence of callus-like structures in roots, the lack of lateral root proliferation, and absence of ectopic outgrowths in leaves under elevated levels of this alkamide. Taken together our results suggest that alkamides and N-acylethanolamides may belong to a class of endogenous signaling compounds that interact with a cytokinin-signaling pathway to control meristematic activity and differentiation processes during plant development.


Asunto(s)
Alcanos/metabolismo , Amidas/metabolismo , Arabidopsis/crecimiento & desarrollo , Citocininas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Proliferación Celular , Expresión Génica , Mutación , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA