Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 31, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245740

RESUMEN

BACKGROUND: Chitinases are widely distributed enzymes that perform the biotransformation of chitin, one of the most abundant polysaccharides on the biosphere, into useful value-added chitooligosaccharides (COS) with a wide variety of biotechnological applications in food, health, and agricultural fields. One of the most important group of enzymes involved in the degradation of chitin comprises the glycoside hydrolase family 18 (GH18), which harbours endo- and exo-enzymes that act synergistically to depolymerize chitin. The secretion of a chitinase activity from the ubiquitous yeast Mestchnikowia pulcherrima and their involvement in the post-harvest biological control of fungal pathogens was previously reported. RESULTS: Three new chitinases from M. pulcherrima, MpChit35, MpChit38 and MpChit41, were molecularly characterized and extracellularly expressed in Pichia pastoris to about 91, 90 and 71 mU ml- 1, respectively. The three enzymes hydrolysed colloidal chitin with optimal activity at 45 ºC and pH 4.0-4.5, increased 2-times their activities using 1 mM of Mn2+ and hydrolysed different types of commercial chitosan. The partial separation and characterization of the complex COS mixtures produced from the hydrolysis of chitin and chitosan were achieved by a new anionic chromatography HPAEC-PAD method and mass spectrometry assays. An overview of the predicted structures of these proteins and their catalytic modes of action were also presented. Depicted their high sequence and structural homology, MpChit35 acted as an exo-chitinase producing di-acetyl-chitobiose from chitin while MpChit38 and MpChit41 both acted as endo-chitinases producing tri-acetyl-chitotriose as main final product. CONCLUSIONS: Three new chitinases from the yeast M. pulcherrima were molecularly characterized and their enzymatic and structural characteristics analysed. These enzymes transformed chitinous materials to fully and partially acetylated COS through different modes of splitting, which make them interesting biocatalysts for deeper structural-function studies on the challenging enzymatic conversion of chitin.


Asunto(s)
Quitinasas , Quitosano , Quitina/química , Quitinasas/genética , Quitinasas/química , Proteínas , Saccharomyces cerevisiae/metabolismo
2.
Microb Biotechnol ; 16(9): 1803-1822, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37317055

RESUMEN

Climate change, desertification, salinisation of soils and the changing hydrology of the Earth are creating or modifying microbial habitats at all scales including the oceans, saline groundwaters and brine lakes. In environments that are saline or hypersaline, the biodegradation of recalcitrant plant and animal polysaccharides can be inhibited by salt-induced microbial stress and/or by limitation of the metabolic capabilities of halophilic microbes. We recently demonstrated that the chitinolytic haloarchaeon Halomicrobium can serve as the host for an ectosymbiont, nanohaloarchaeon 'Candidatus Nanohalobium constans'. Here, we consider whether nanohaloarchaea can benefit from the haloarchaea-mediated degradation of xylan, a major hemicellulose component of wood. Using samples of natural evaporitic brines and anthropogenic solar salterns, we describe genome-inferred trophic relations in two extremely halophilic xylan-degrading three-member consortia. We succeeded in genome assembly and closure for all members of both xylan-degrading cultures and elucidated the respective food chains within these consortia. We provide evidence that ectosymbiontic nanohaloarchaea is an active ecophysiological component of extremely halophilic xylan-degrading communities (although by proxy) in hypersaline environments. In each consortium, nanohaloarchaea occur as ectosymbionts of Haloferax, which in turn act as scavenger of oligosaccharides produced by xylan-hydrolysing Halorhabdus. We further obtained and characterised the nanohaloarchaea-host associations using microscopy, multi-omics and cultivation approaches. The current study also doubled culturable nanohaloarchaeal symbionts and demonstrated that these enigmatic nano-sized archaea can be readily isolated in binary co-cultures using an appropriate enrichment strategy. We discuss the implications of xylan degradation by halophiles in biotechnology and for the United Nation's Sustainable Development Goals.


Asunto(s)
Haloferax , Xilanos , Ecosistema
3.
Comput Struct Biotechnol J ; 19: 6328-6342, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938409

RESUMEN

Many microorganisms feed on the tissue and recalcitrant bone materials from dead animals, however little is known about the collaborative effort and characteristics of their enzymes. In this study, microbial metagenomes from symbionts of the marine bone-dwelling worm Osedax mucofloris, and from microbial biofilms growing on experimentally deployed bone surfaces were screened for specialized bone-degrading enzymes. A total of 2,043 taxonomically (closest match within 40 phyla) and functionally (1 proteolytic and 9 glycohydrolytic activities) diverse and non-redundant sequences (median pairwise identity of 23.6%) encoding such enzymes were retrieved. The taxonomic assignation and the median identity of 72.2% to homologous proteins reflect microbial and functional novelty associated to a specialized bone-degrading marine community. Binning suggests that only one generalist hosting all ten targeted activities, working in synergy with multiple specialists hosting a few or individual activities. Collagenases were the most abundant enzyme class, representing 48% of the total hits. A total of 47 diverse enzymes, representing 8 hydrolytic activities, were produced in Escherichia coli, whereof 13 were soluble and active. The biochemical analyses revealed a wide range of optimal pH (4.0-7.0), optimal temperature (5-65 °C), and of accepted substrates, specific to each microbial enzyme. This versatility may contribute to a high environmental plasticity of bone-degrading marine consortia that can be confronted to diverse habitats and bone materials. Through bone-meal degradation tests, we further demonstrated that some of these enzymes, particularly those from Flavobacteriaceae and Marinifilaceae, may be an asset for development of new value chains in the biorefinery industry.

4.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34948409

RESUMEN

The first lytic polysaccharide monooxygenase (LPMO) detected in the genome of the widespread ascomycete Talaromyces amestolkiae (TamAA9A) has been successfully expressed in Pichia pastoris and characterized. Molecular modeling of TamAA9A showed a structure similar to those from other AA9 LPMOs. Although fungal LPMOs belonging to the genera Penicillium or Talaromyces have not been analyzed in terms of regioselectivity, phylogenetic analyses suggested C1/C4 oxidation which was confirmed by HPAEC. To ascertain the function of a C-terminal linker-like region present in the wild-type sequence of the LPMO, two variants of the wild-type enzyme, one without this sequence and one with an additional C-terminal carbohydrate binding domain (CBM), were designed. The three enzymes (native, without linker and chimeric variant with a CBM) were purified in two chromatographic steps and were thermostable and active in the presence of H2O2. The transition midpoint temperature of the wild-type LPMO (Tm = 67.7 °C) and its variant with only the catalytic domain (Tm = 67.6 °C) showed the highest thermostability, whereas the presence of a CBM reduced it (Tm = 57.8 °C) and indicates an adverse effect on the enzyme structure. Besides, the potential of the different T. amestolkiae LPMO variants for their application in the saccharification of cellulosic and lignocellulosic materials was corroborated.


Asunto(s)
Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Talaromyces/metabolismo , Secuencia de Aminoácidos , Celulosa/química , Estabilidad de Enzimas , Proteínas Fúngicas/química , Oxigenasas de Función Mixta/química , Modelos Moleculares , Conformación Proteica , Alineación de Secuencia , Especificidad por Sustrato , Talaromyces/química , Talaromyces/enzimología
5.
Sci Rep ; 11(1): 7158, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785821

RESUMEN

The ß-fructofuranosidase from Schwanniomyces occidentalis (Ffase) is a useful biotechnological tool for the fructosylation of different acceptors to produce fructooligosaccharides (FOS) and fructo-conjugates. In this work, the structural determinants of Ffase involved in the transfructosylating reaction of the alditols mannitol and erythritol have been studied in detail. Complexes with fructosyl-erythritol or sucrose were analyzed by crystallography and the effect of mutational changes in positions Gln-176, Gln-228, and Asn-254 studied to explore their role in modulating this biocatalytic process. Interestingly, N254T variant enhanced the wild-type protein production of fructosyl-erythritol and FOS by [Formula: see text] 30% and 48%, respectively. Moreover, it produced neokestose, which represented [Formula: see text] 27% of total FOS, and yielded 31.8 g l-1 blastose by using glucose as exclusive fructosyl-acceptor. Noteworthy, N254D and Q176E replacements turned the specificity of Ffase transferase activity towards the synthesis of the fructosylated polyols at the expense of FOS production, but without increasing the total reaction efficiency. The results presented here highlight the relevance of the pair Gln-228/Asn-254 for Ffase donor-sucrose binding and opens new windows of opportunity for optimizing the generation of fructosyl-derivatives by this enzyme enhancing its biotechnological applicability.


Asunto(s)
Proteínas Fúngicas/metabolismo , Saccharomycetales/enzimología , beta-Fructofuranosidasa/metabolismo , Biotecnología/métodos , Pruebas de Enzimas , Eritritol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Cinética , Manitol/metabolismo , Oligosacáridos/metabolismo , Saccharomycetales/genética , Especificidad por Sustrato , Sacarosa/metabolismo , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/aislamiento & purificación
6.
Sci Rep ; 9(1): 17441, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31767902

RESUMEN

Enzymatic glycosylation of polyphenols is a tool to improve their physicochemical properties and bioavailability. On the other hand, glycosidic enzymes can be inhibited by phenolic compounds. In this work, we studied the specificity of various phenolics (hydroquinone, hydroxytyrosol, epigallocatechin gallate, catechol and p-nitrophenol) as fructosyl acceptors or inhibitors of the ß-fructofuranosidase from Xanthophyllomyces dendrorhous (pXd-INV). Only hydroquinone and hydroxytyrosol gave rise to the formation of glycosylated products. For the rest, an inhibitory effect on both the hydrolytic (H) and transglycosylation (T) activity of pXd-INV, as well as an increase in the H/T ratio, was observed. To disclose the binding mode of each compound and elucidate the molecular features determining its acceptor or inhibitor behaviour, ternary complexes of the inactive mutant pXd-INV-D80A with fructose and the different polyphenols were analyzed by X-ray crystallography. All the compounds bind by stacking against Trp105 and locate one of their phenolic hydroxyls making a polar linkage to the fructose O2 at 3.6-3.8 Å from the C2, which could enable the ulterior nucleophilic attack leading to transfructosylation. Binding of hydroquinone was further investigated by soaking in absence of fructose, showing a flexible site that likely allows productive motion of the intermediates. Therefore, the acceptor capacity of the different polyphenols seems mediated by their ability to make flexible polar links with the protein, this flexibility being essential for the transfructosylation reaction to proceed. Finally, the binding affinity of the phenolic compounds was explained based on the two sites previously reported for pXd-INV.


Asunto(s)
Basidiomycota/enzimología , Proteínas Fúngicas/antagonistas & inhibidores , Fenoles/farmacología , beta-Fructofuranosidasa/antagonistas & inhibidores , Basidiomycota/genética , Dominio Catalítico , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Cristalografía por Rayos X , Fructosa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosilación , Hidrólisis , Modelos Moleculares , Estructura Molecular , Polifenoles/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad , Especificidad por Sustrato , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo
7.
Molecules ; 23(11)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30400664

RESUMEN

The regioselective α-glucosylation of hesperetin was achieved by a transglycosylation reaction catalyzed by cyclodextrin glucanotransferase (CGTase) from Thermoanaerobacter sp. using soluble starch as glucosyl donor. By combining mass spectrometry (ESI-TOF) and 2D-NMR analysis, the main monoglucosylated derivative was fully characterized (hesperetin 7-O-α-d-glucopyranoside). In order to increase the yield of monoglucoside, several reaction parameters were optimized: Nature and percentage of cosolvent, composition of the aqueous phase, glucosyl donor, temperature, and the concentrations of hesperetin and soluble starch. Under the optimal conditions, which included the presence of 30% of bis(2-methoxyethyl) ether as cosolvent, the maximum concentration of monoglucoside was approximately 2 mM, obtained after 24 h of reaction. To our knowledge, this is the first report of direct glucosylation of hesperetin employing free enzymes instead of whole cells.


Asunto(s)
Glucosiltransferasas/química , Hesperidina/química , Catálisis , Cromatografía Líquida de Alta Presión , Glucosiltransferasas/metabolismo , Glicosilación , Hesperidina/metabolismo , Espectrometría de Masas , Estructura Molecular
8.
Appl Microbiol Biotechnol ; 100(20): 8769-78, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27229725

RESUMEN

The ß-fructofuranosidase from the yeast Schwanniomyces occidentalis (Ffase) produces the prebiotic sugars 6-kestose and 1-kestose by transfructosylation of sucrose, which makes it of biotechnological interest. In this study, the hydrolase and transferase activity of this enzyme was kinetically characterized and its potential to synthesize new fructosylated products explored. A total of 40 hydroxylated compounds were used as potential fructosyl-acceptor alternatives to sucrose. Only 17 of them, including some monosaccharides, disaccharides, and oligosaccharides as well as alditols and glycosides were fructosylated. The best alternative acceptors were the alditols. The major transfer product of the reaction including mannitol was purified and characterized as 1-O-ß-D-fructofuranosyl-D-mannitol, whose maximum concentration reached 44 g/L, representing about 7.3 % of total compounds in the mixture and 89 % of all products generated by transfructosylation. The reactions including erythritol produced 35 g/L of an isomer mixture comprising 1- and 4-O-ß-D-fructofuranosyl-D-erythritol. In addition, Ffase produced 24 g/L of the disaccharide blastose by direct fructosylation of glucose, which makes it the first enzyme characterized from yeast showing this ability. Thus, novel fructosylated compounds with potential applications in food and pharmaceutical industries can be obtained due to the Ffase fructosyl-acceptor promiscuity.


Asunto(s)
Saccharomycetales/enzimología , Alcoholes del Azúcar/metabolismo , beta-Fructofuranosidasa/metabolismo , Cinética , Especificidad por Sustrato , Sacarosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA