Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1177, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331922

RESUMEN

Acquiring spatial control of nanoscopic metal clusters is central to their function as efficient multi-electron catalysts. However, dispersing metal clusters on surfaces or in porous hosts is accompanied by an intrinsic heterogeneity that hampers detailed understanding of the chemical structure and its relation to reactivities. Tethering pre-assembled molecular metal clusters into polymeric, crystalline 2D or 3D networks constitutes an unproven approach to realizing ordered arrays of chemically well-defined metal clusters. Herein, we report the facile synthesis of a {Pd3} cluster-based organometallic framework from a molecular triangulo-Pd3(CNXyl)6 (Xyl = xylyl; Pd3) cluster under chemically mild conditions. The formally zero-valent Pd3 cluster readily engages in a complete ligand exchange when exposed to a similar, ditopic isocyanide ligand, resulting in polymerization into a 2D coordination network (Pd3-MOF). The structure of Pd3-MOF could be unambiguously determined by continuous rotation 3D electron diffraction (3D-ED) experiments to a resolution of ~1.0 Å (>99% completeness), showcasing the applicability of 3D-ED to nanocrystalline, organometallic polymers. Pd3-MOF displays Pd03 cluster nodes, which possess significant thermal and aerobic stability, and activity towards hydrogenation catalysis. Importantly, the realization of Pd3-MOF paves the way for the exploitation of metal clusters as building blocks for rigidly interlocked metal nanoparticles at the molecular limit.

2.
J Am Chem Soc ; 145(42): 23249-23256, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37813379

RESUMEN

Bond breaking has emerged as a new tool to postsynthetically modify the pore structure in metal-organic frameworks since it allows us to obtain pore environments in structures that are inaccessible by other techniques. Here, we extend the concept of clip-off chemistry to archetypical ZIF-8, taking advantage of the different stabilities of the bonds between imidazolate and Zn and Fe metal atoms in heterometallic Fe-Zn-ZIF-8. We demonstrate that Fe centers can be removed selectively without affecting the backbone of the structure that is supported by the Zn atoms. This allows us to create mesopores within the highly stable ZIF-8 structure. The strategy presented, combined with control of the amount of iron centers incorporated into the structure, permits porosity engineering of ZIF materials and opens a new avenue for designing novel hierarchical porous frameworks.

3.
J Mater Chem B ; 11(38): 9179-9184, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37718709

RESUMEN

Although Metal-organic frameworks (MOFs) have received attention as drug delivery systems, their application in the delivery of macromolecules is limited by their pore size and opening. Herein, we present the synthesis of nanostructured MUV-2, a hierarchical mesoporous iron-based MOF that can store high payloads of the macromolecular drug paclitaxel (ca. 23% w/w), increasing its selectivity towards HeLa cancer cells over HEK non-cancerous cells. Moreover, this NanoMUV-2 permits full degradation under simulated physiological conditions while maintaining biocompatibility, and is amenable to specific surface modifications that increase its cell permeation, efficient cytosol delivery and cancer-targeting effect, further intensifying the cancer selectivity of paclitaxel.


Asunto(s)
Sistemas de Liberación de Medicamentos , Estructuras Metalorgánicas , Humanos , Preparaciones Farmacéuticas , Células HeLa , Paclitaxel/farmacología
4.
Dalton Trans ; 52(43): 15682-15687, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37646573

RESUMEN

A family of robust and stable molybdenum-based metal-organic cages have been obtained based on the [Mo2O2(µ2-O)2]2+ secondary building unit. The resulting cages are decorated with different pyrdine derivatives that impart structural stability, resulting in the structural elucidation of the activated cage with single-crystal diffraction. The chemical robustness of the cage is also demonstrated by the post-synthetic modification of the cage, which allows the exchange of the pyridine derivatives without rupture of the cage.

5.
J Am Chem Soc ; 145(20): 11258-11264, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37158707

RESUMEN

We describe the first meltable iron-based zeolitic imidazolate framework (ZIF), denoted MUV-24. This material, elusive from direct synthesis, is obtained from the thermal treatment of [Fe3(im)6(Him)2], which yields Fe(im)2 upon loss of the neutral imidazole molecules. Different crystalline phase transformations are observed upon further heating, until the material melts at 482 °C. Vitrification upon cooling of the liquid phase gives rise to the first Fe-metal-organic framework glass. X-ray total scattering experiments show that the tetrahedral environment of the crystalline solids is maintained in the glass, whereas nanoindentation measurements reveal an increase in Young's modulus, in agreement with stiffening upon vitrification.

6.
J Mater Chem A Mater ; 11(10): 5320-5327, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36911163

RESUMEN

Two ultramicroporous 2D and 3D iron-based Metal-Organic Frameworks (MOFs) have been obtained by solvothermal synthesis using different ratios and concentrations of precursors. Their reduced pore space decorated with pendant pyridine from tangling isonicotinic ligands enables the combination of size-exclusion kinetic gas separation, due to their small pores, with thermodynamic separation, resulting from the interaction of the linker with CO2 molecules. This combined separation results in efficient materials for dynamic breakthrough gas separation with virtually infinite CO2/N2 selectivity in a wide operando range and with complete renewability at room temperature and ambient pressure.

7.
Chem Sci ; 14(11): 3048-3055, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36937587

RESUMEN

A bifunctionalized polyoxometalate (POM), [V6O19(C16H15N6O)2]2-, which contains a redox active hexavanadate moiety covalently linked to two tridentate 2,6-bis(pyrazol-1-yl)pyridine (1-bpp) ligands, has been prepared and characterized. Reaction of this hybrid molecule with Fe(ii) or Zn(ii) ions produces crystalline neutral 1D networks of formula Fe[V6O19(C16H15N6O)2]·solv (2) and Zn[V6O19(C16H15N6O)2]·solv (3) (solv = solvent molecules). Magnetic properties of 2 show an abrupt spin-crossover (SCO) with the temperature, which can be induced by light irradiation at 10 K (Light-Induced Excited Spin-State Trapping, LIESST effect). Interestingly, this porous and flexible structure enables reversible exchange of solvents in 2, which allows tuning the temperature of the thermal SCO. In 2 and 3, the hexavanadate unit can be reduced by electrochemical or chemical means in a reversible way. Chemical reduction and reoxidation by a postsynthetic method is accompanied by the insertion in the structure of the reductant and oxidant molecules (cobaltocene and tribromide, respectively), which provokes drastic changes in the spin state of Fe(ii). This leads to an elegant switching multifunctional material in which SCO properties of the Fe(ii) complexes coexist with the redox properties of the POM and can be tuned by a variety of stimuli such as temperature, light, solvent exchange or electron transfer. During the reduction process, 3 undergoes a single-crystal-to-single-crystal one-electron reduction, which confirms the presence of cobaltocenium cations by single crystal X-ray diffraction.

8.
ACS Appl Mater Interfaces ; 15(4): 5309-5316, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36691894

RESUMEN

We report that the carborane-based metal-organic framework (MOF) mCB-MOF-1 can achieve high adsorptive selectivity for CO2:N2 mixtures. This hydrophobic MOF presenting open metal sites shows high CO2 adsorption capacity and remarkable selectivity values that are maintained even under extremely humid conditions. The comparison of mCB-MOF-1' with MOF-74(Ni) demonstrates the superior performance of the former under challenging moisture operation conditions.

9.
J Am Chem Soc ; 144(20): 9074-9082, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35575688

RESUMEN

Herein, we report on the use of tetrathiavulvalene-tetrabenzoic acid, H4TTFTB, to engender semiconductivity in porous hydrogen-bonded organic frameworks (HOFs). By tuning the synthetic conditions, three different polymorphs have been obtained, denoted MUV-20a, MUV-20b, and MUV-21, all of them presenting open structures (22, 15, and 27%, respectively) and suitable TTF stacking for efficient orbital overlap. Whereas MUV-21 collapses during the activation process, MUV-20a and MUV-20b offer high stability evacuation, with a CO2 sorption capacity of 1.91 and 1.71 mmol g-1, respectively, at 10 °C and 6 bar. Interestingly, both MUV-20a and MUV-20b present a zwitterionic character with a positively charged TTF core and a negatively charged carboxylate group. First-principles calculations predict the emergence of remarkable charge transport by means of a through-space hopping mechanism fostered by an efficient TTF π-π stacking and the spontaneous formation of persistent charge carriers in the form of radical TTF•+ units. Transport measurements confirm the efficient charge transport in zwitterionic MUV-20a and MUV-20b with no need for postsynthetic treatment (e.g., electrochemical oxidation or doping), demonstrating the semiconductor nature of these HOFs with record experimental conductivities of 6.07 × 10-7 (MUV-20a) and 1.35 × 10-6 S cm-1 (MUV-20b).

10.
Chem Sci ; 13(3): 842-847, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35173949

RESUMEN

Different mixed-ligand Zeolitic Imidazolate Frameworks (ZIFs) with sodalite topology, i.e. isoreticular to ZIF-8, unachievable by conventional synthetic routes, have been prepared using a solvent-free methodology. In particular, the versatility of this method is demonstrated with three different metal centres (Zn, Co and Fe) and binary combinations of three different ligands (2-methylimidazole, 2-ethylimidazole and 2-methylbenzimidazole). One combination of ligands, 2-ethylimidazole and 2-methylbenzimidazole, results in the formation of SOD frameworks for the three metal centres despite this topology not being obtained for the individual ligands. Theoretical calculations confirm that this topology is the lowest in energy upon ligand mixing.

11.
Dalton Trans ; 51(5): 1861-1865, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35018913

RESUMEN

Herein we show the versatility of coordination chemistry to design and expand a family of 2D materials by incorporating F groups at the surface of the layers. Through the use of a prefuntionalized organic linker with F groups, it is possible to achieve a layered magnetic material based on Fe(II) centers that are chemically stable in open air, contrary to the known 2D inorganic magnetic materials. The high quality of the single crystals and their robustness allow to fabricate 2D molecular materials by micromechanical exfoliation, preserving the crystalline nature of these layers together with the desired functionalization.

12.
Chem Sci ; 14(1): 179-185, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36605746

RESUMEN

Palladium-based metal-organic frameworks (Pd-MOFs) are an emerging class of heterogeneous catalysts extremely challenging to achieve due to the facile leaching of palladium and its tendency to be reduced. Herein, Pd(ii) was successfully incorporated in the framework of a MOF denoted as MUV-22 using a solvent assisted reaction. This stable MOF, with square-octahedron (soc) topology as MIL-127, and a porosity of 710 m2 g-1, is highly active, selective, and recyclable for the Suzuki-Miyaura allylation of aryl and alkyl boronates as exemplified with the coupling between cinnamyl bromide and Me-Bpin, a typically reluctant reagent in cross-coupling reactions.

13.
J Am Chem Soc ; 143(44): 18502-18510, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34723487

RESUMEN

Through rational chemical design, and thanks to the hybrid nature of metal-organic frameworks (MOFs), it is possible to prepare molecule-based 2D magnetic materials stable at ambient conditions. Here, we illustrate the versatility of this approach by changing both the metallic nodes and the ligands in a family of layered MOFs that allows the tuning of their magnetic properties. Specifically, the reaction of benzimidazole-type ligands with different metal centers (MII = Fe, Co, Mn, Zn) in a solvent-free synthesis produces a family of crystalline materials, denoted as MUV-1(M), which order antiferromagnetically with critical temperatures that depend on M. Furthermore, the incorporation of additional substituents in the ligand results in a novel system, denoted as MUV-8, formed by covalently bound magnetic double layers interconnected by van der Waals interactions, a topology that is very rare in the field of 2D materials and unprecedented for 2D magnets. These layered materials are robust enough to be mechanically exfoliated down to a few layers with large lateral dimensions. Finally, the robustness and crystallinity of these layered MOFs allow the fabrication of nanomechanical resonators that can be used to detect─through laser interferometry─the magnetic order in thin layers of these 2D molecule-based antiferromagnets.

14.
Angew Chem Int Ed Engl ; 60(29): 15920-15927, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-33729645

RESUMEN

Coordination polymers (CPs), including metal-organic frameworks (MOFs), are crystalline materials with promising applications in electronics, magnetism, catalysis, and gas storage/separation. However, the mechanisms and pathways underlying their formation remain largely undisclosed. Herein, we demonstrate that diffusion-controlled mixing of reagents at the very early stages of the crystallization process (i.e., within ≈40 ms), achieved by using continuous-flow microfluidic devices, can be used to enable novel crystallization pathways of a prototypical spin-crossover MOF towards its thermodynamic product. In particular, two distinct and unprecedented nucleation-growth pathways were experimentally observed when crystallization was triggered under microfluidic mixing. Full-atom molecular dynamics simulations also confirm the occurrence of these two distinct pathways during crystal growth. In sharp contrast, a crystallization by particle attachment was observed under bulk (turbulent) mixing. These unprecedented results provide a sound basis for understanding the growth of CPs and open up new avenues for the engineering of porous materials by using out-of-equilibrium conditions.

15.
Chemistry ; 27(14): 4653-4659, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33337561

RESUMEN

Carbon capture and storage with porous materials is one of the most promising technologies to minimize CO2 release into the atmosphere. Here, we report a family of compartmentalized coordination polymers (CCPs) capable of capturing gas molecules in a selective manner based on two novel tetrazole-based ligands. Crystal structures have been modelled theoretically under the Density Functional Theory (DFT) revealing the presence of discrete voids of 380 Å3 . Single gas adsorption isotherms of N2 , CH4 and CO2 have been measured, obtaining a loading capacity of 0.6, 1.7 and 2.2 molecules/void at 10 bar and at 298 K for the best performing material. Moreover, they present excellent selectivity and regenerability for CO2 in mixtures with CH4 and N2 in comparison with other reported materials, as evidenced by dynamic breakthrough gas experiments. These frameworks are therefore great candidates for separation of gas mixtures in the chemical engineering industry.

17.
Chemistry ; 26(60): 13659-13667, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32521073

RESUMEN

Metal-organic framework (MOF)-driven synthesis is considered as a promising alternative for the development of new catalytic materials with well-designed active sites. This synthetic approach is used here to gradually transform a new bimetallic MOF, with Pd and Fe as the metal components, by the in situ generation of aniline under mild conditions. This methodology results in a compositionally homogeneous nanocomposite formed by Fe-doped Pd nanoparticles that, in turn, are supported on iron oxide-doped carbon. The nanocomposite has been fully characterized by several techniques such as IR and Raman spectroscopy, TEM, XPS, and XAS. The performance of this nanocomposite as an heterogeneous catalyst for hydrogenation of nitroarenes and nitrobenzene coupling with benzaldehyde has been evaluated, proving it to be an efficient and reusable catalyst.

18.
Chem Commun (Camb) ; 56(55): 7657-7660, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32520025

RESUMEN

The isolation of high-quality flakes of 2D MOFs in large amounts remains a challenge. In this work, we obtained nanosheets for a whole family of Fe-based magnetic MOFs, MUV-1-X, through a liquid exfoliation procedure. High-quality crystalline layers with lateral sizes of 8 µm and thicknesses of 4 nm, which retain the structural integrity and magnetic properties, are obtained.

19.
ACS Appl Mater Interfaces ; 11(50): 46658-46665, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752488

RESUMEN

The synthesis of a new microporous metal-organic framework (MOF) based on two secondary building units, with dinuclear cobalt centers, has been developed. The employment of a well-defined cobalt cluster results in an unusual topology of the Co2-MOF, where one of the cobalt centers has three open coordination positions, which has no precedent in MOF materials based on cobalt. Adsorption isotherms have revealed that Co2-MOF is in the range of best CO2 adsorbents among the carbon materials, with very high CO2/CH4 selectivity. On the other hand, dispersion of Co2-MOF in an alcoholic solution of Nafion gives rise to a composite (Co2-MOF@Nafion) with great resistance to hydrolysis in aqueous media and good adherence to graphite electrodes. In fact, it exhibits high electrocatalytic activity and robustness for the oxygen evolution reaction (OER), with a turnover frequency number value superior to those reported for similar electrocatalysts. Overall, this work has provided the basis for the rational design of new cobalt OER catalysts and related materials employing well-defined metal clusters as directing agents of the MOF structure.

20.
Chem Commun (Camb) ; 55(99): 14992-14995, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31777875

RESUMEN

The first family of hybrid mononuclear organic-inorganic lanthanoid complexes is reported, based on [PW11O39]7- and 1,10-phenanthroline ligands. This hybrid approach causes a dramatic improvement of the relaxation time (×1000) with a decrease of the optimal field while maintaining the Ueff of the inorganic analogues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA