Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 925: 171783, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503390

RESUMEN

Coastal ecosystems such as salt marshes, seagrass meadows, and kelp forests contribute to climate regulation as carbon sinks. However, coastal ecosystems may act as carbon sources as beach wrack accumulations may release greenhouse gases (GHG) during decomposition. The magnitude of GHG emissions of beach wrack accumulations under natural conditions are poorly understood, hampering accurate blue carbon accountings. In this study, we assessed the spatio-temporal variability and environmental factors driving CO2, CH4 and N2O emissions from beach wrack accumulations on a temperate sandy beach. Beach wrack accumulations, dominated by Zostera marina and opportunistic brown macroalgae, presented variable spatio-temporal dynamics. Annual beach wrack GHG emissions achieved up to 77,915 mg m-2 d-1 CO2e (CO2 equivalents) and varied largely throughout the study period due to interactive effects of temperature, wave exposure, beach wrack biomass moisture, abundance, and species composition. Our findings showed that methane emissions in new, freshly deposited, and in drifting wrack in the water reached up to 100 mg m-2 d-1, representing up to 57 % of annual CO2e emissions occurring throughout the year. Nitrous oxide emissions were highly variable and comprised a minor extent (i.e., up to 4 %) of annual CO2e emissions. Together, wrack CH4 and N2O emissions provided 13.69 g CO2 m-2 per year to the atmosphere. Our findings indicate that excessive opportunistic macroalgae biomass driven by eutrophication may explain increased CO2 and N2O emissions. We conclude that whilst beach wrack depositions are a natural and essential part of coastal ecosystems, they may provide an extra source of GHG to the atmosphere, potentially counteracting the role of vegetated coastal ecosystems as carbon sinks.


Asunto(s)
Gases de Efecto Invernadero , Ecosistema , Dióxido de Carbono/análisis , Bahías , Metano/análisis , Óxido Nitroso/análisis , Carbono
2.
Sci Rep ; 13(1): 20096, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973793

RESUMEN

The distribution data of 11 soft substrate charophyte and angiosperm species were analyzed. Our study aimed to elucidate the co-occurrence patterns among these sympatric macrophyte species and quantify their distribution areas. The central hypothesis of this study proposed that the observed co-occurrence patterns among the studied species deviate from what would be expected by random chance. Macrophyte occurrence data was derived from an extensive field sampling database. Environmental variables available as georeferenced raster layers including topographical, hydrodynamic, geological, physical, chemical, and biological variables were used as predictor variables in the random forest models to predict the spatial distribution of the species. Permutation tests revealed statistically significant deviations from random co-occurrence patterns. The analysis demonstrated that species tended to co-occur more frequently within their taxonomic groups (i.e., within charophytes and within angiosperms) than between these groups. The most extensive distribution overlap was observed between Chara aspera Willd. and Chara canescens Loisel., while Zostera marina L. exhibited the least overlap with the other species. The mean number of co-occurring species was the highest in Chara baltica (Hartman) Bruzelius while Z. marina had the largest share of single-species occurrences. Based on the distribution models, Stuckenia pectinata (L.) Börner had the largest distribution area.


Asunto(s)
Chara , Carofíceas , Fabaceae , Magnoliopsida , Países Bálticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...