Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 21(6): 1575-1587, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35608653

RESUMEN

Phosphoproteomics routinely quantifies changes in the levels of thousands of phosphorylation sites, but functional analysis of such data remains a major challenge. While databases like PhosphoSitePlus contain information about many phosphorylation sites, the vast majority of known sites is not assigned to any protein kinase. Assigning changes in the phosphoproteome to the activity of individual kinases therefore remains a key challenge. A recent large-scale study systematically identified in vitro substrates for most human protein kinases. Here, we reprocessed and filtered these data to generate an in vitro Kinase-to-Phosphosite database (iKiP-DB). We show that iKiP-DB can accurately predict changes in kinase activity in published phosphoproteomic data sets for both well-studied and poorly characterized kinases. We apply iKiP-DB to a newly generated phosphoproteomic analysis of SARS-CoV-2 infected human lung epithelial cells and provide evidence for coronavirus-induced changes in host cell kinase activity. In summary, we show that iKiP-DB is widely applicable to facilitate the functional analysis of phosphoproteomic data sets.


Asunto(s)
COVID-19 , Fosfoproteínas , Humanos , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , SARS-CoV-2
2.
Front Microbiol ; 12: 746795, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777295

RESUMEN

Allicin (diallyl thiosulfinate) is the major thiol-reactive organosulfur compound produced by garlic plants (Allium sativum) upon tissue damage. Allicin exerts its strong antimicrobial activity against bacteria and fungi via S-thioallylation of protein thiols and low molecular weight thiols. Here, we investigated the effect of allicin on SARS-CoV-2 infected Vero E6 and Calu-3 cells. Toxicity tests revealed that Calu-3 cells showed greater allicin tolerance, probably due to >4-fold higher GSH levels compared to the very sensitive Vero E6 cells. Exposure of infected Vero E6 and Calu-3 cells to biocompatible allicin doses led to a ∼60-70% decrease of viral RNA and infectious viral particles. Label-free quantitative proteomics was used to investigate the changes in the Calu-3 proteome after SARS-CoV-2 infection and the effect of allicin on the host-virus proteome. SARS-CoV-2 infection of Calu-3 cells caused a strong induction of the antiviral interferon-stimulated gene (ISG) signature, including several antiviral effectors, such as cGAS, Mx1, IFIT, IFIH, IFI16, IFI44, OAS, and ISG15, pathways of vesicular transport, tight junctions (KIF5A/B/C, OSBPL2, CLTCL1, and ARHGAP17) and ubiquitin modification (UBE2L3/5), as well as reprogramming of host metabolism, transcription and translation. Allicin treatment of infected Calu-3 cells reduced the expression of IFN signaling pathways and ISG effectors and reverted several host pathways to levels of uninfected cells. Allicin further reduced the abundance of the structural viral proteins N, M, S and ORF3 in the host-virus proteome. In conclusion, our data demonstrate the antiviral and immunomodulatory activity of biocompatible doses of allicin in SARS-CoV-2-infected cell cultures. Future drug research should be directed to exploit the thiol-reactivity of allicin derivatives with increased stability and lower human cell toxicity as antiviral lead compounds.

3.
iScience ; 24(3): 102151, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33585804

RESUMEN

Detailed knowledge of the molecular biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is crucial for understanding of viral replication, host responses, and disease progression. Here, we report gene expression profiles of three SARS-CoV- and SARS-CoV-2-infected human cell lines. SARS-CoV-2 elicited an approximately two-fold higher stimulation of the innate immune response compared to SARS-CoV in the human epithelial cell line Calu-3, including induction of miRNA-155. Single-cell RNA sequencing of infected cells showed that genes induced by virus infections were broadly upregulated, whereas interferon beta/lambda genes, a pro-inflammatory cytokines such as IL-6, were expressed only in small subsets of infected cells. Temporal analysis suggested that transcriptional activities of interferon regulatory factors precede those of nuclear factor κB. Lastly, we identified heat shock protein 90 (HSP90) as a protein relevant for the infection. Inhibition of the HSP90 activity resulted in a reduction of viral replication and pro-inflammatory cytokine expression in primary human airway epithelial cells.

4.
Nature ; 585(7826): 588-590, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32698190

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been associated with more than 780,000 deaths worldwide (as of 20 August 2020). To develop antiviral interventions quickly, drugs used for the treatment of unrelated diseases are currently being repurposed to treat COVID-19. Chloroquine is an anti-malaria drug that is used for the treatment of COVID-19 as it inhibits the spread of SARS-CoV-2 in the African green monkey kidney-derived cell line Vero1-3. Here we show that engineered expression of TMPRSS2, a cellular protease that activates SARS-CoV-2 for entry into lung cells4, renders SARS-CoV-2 infection of Vero cells insensitive to chloroquine. Moreover, we report that chloroquine does not block infection with SARS-CoV-2 in the TMPRSS2-expressing human lung cell line Calu-3. These results indicate that chloroquine targets a pathway for viral activation that is not active in lung cells and is unlikely to protect against the spread of SARS-CoV-2 in and between patients.


Asunto(s)
Cloroquina/farmacología , Cloroquina/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Pulmón/citología , Pulmón/efectos de los fármacos , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Animales , Betacoronavirus/efectos de los fármacos , COVID-19 , Línea Celular , Chlorocebus aethiops , Humanos , Técnicas In Vitro , Pulmón/virología , Pandemias , SARS-CoV-2 , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Insuficiencia del Tratamiento , Células Vero , Internalización del Virus , Tratamiento Farmacológico de COVID-19
5.
Nat Commun ; 10(1): 5770, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852899

RESUMEN

Autophagy is an essential cellular process affecting virus infections and other diseases and Beclin1 (BECN1) is one of its key regulators. Here, we identified S-phase kinase-associated protein 2 (SKP2) as E3 ligase that executes lysine-48-linked poly-ubiquitination of BECN1, thus promoting its proteasomal degradation. SKP2 activity is regulated by phosphorylation in a hetero-complex involving FKBP51, PHLPP, AKT1, and BECN1. Genetic or pharmacological inhibition of SKP2 decreases BECN1 ubiquitination, decreases BECN1 degradation and enhances autophagic flux. Middle East respiratory syndrome coronavirus (MERS-CoV) multiplication results in reduced BECN1 levels and blocks the fusion of autophagosomes and lysosomes. Inhibitors of SKP2 not only enhance autophagy but also reduce the replication of MERS-CoV up to 28,000-fold. The SKP2-BECN1 link constitutes a promising target for host-directed antiviral drugs and possibly other autophagy-sensitive conditions.


Asunto(s)
Autofagia/inmunología , Beclina-1/metabolismo , Infecciones por Coronavirus/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Animales , Autofagia/efectos de los fármacos , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Proteolisis/efectos de los fármacos , Proteínas Quinasas Asociadas a Fase-S/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Fase-S/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/inmunología , Células Vero
6.
PLoS Pathog ; 14(9): e1007296, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30248143

RESUMEN

SARS-coronavirus (CoV) is a zoonotic agent derived from rhinolophid bats, in which a plethora of SARS-related, conspecific viral lineages exist. Whereas the variability of virulence among reservoir-borne viruses is unknown, it is generally assumed that the emergence of epidemic viruses from animal reservoirs requires human adaptation. To understand the influence of a viral factor in relation to interspecies spillover, we studied the papain-like protease (PLP) of SARS-CoV. This key enzyme drives the early stages of infection as it cleaves the viral polyprotein, deubiquitinates viral and cellular proteins, and antagonizes the interferon (IFN) response. We identified a bat SARS-CoV PLP, which shared 86% amino acid identity with SARS-CoV PLP, and used reverse genetics to insert it into the SARS-CoV genome. The resulting virus replicated like SARS-CoV in Vero cells but was suppressed in IFN competent MA-104 (3.7-fold), Calu-3 (2.6-fold) and human airway epithelial cells (10.3-fold). Using ectopically-expressed PLP variants as well as full SARS-CoV infectious clones chimerized for PLP, we found that a protease-independent, anti-IFN function exists in SARS-CoV, but not in a SARS-related, bat-borne virus. This PLP-mediated anti-IFN difference was seen in primate, human as well as bat cells, thus independent of the host context. The results of this study revealed that coronavirus PLP confers a variable virulence trait among members of the species SARS-CoV, and that a SARS-CoV lineage with virulent PLPs may have pre-existed in the reservoir before onset of the epidemic.


Asunto(s)
Cisteína Endopeptidasas/fisiología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Proteínas Virales/fisiología , Secuencia de Aminoácidos , Animales , Quirópteros/virología , Chlorocebus aethiops , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/genética , Reservorios de Enfermedades/virología , Células HEK293 , Especificidad del Huésped , Interacciones Huésped-Patógeno , Humanos , Interferones/antagonistas & inhibidores , Filogenia , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Homología de Secuencia de Aminoácido , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/virología , Ubiquitina/metabolismo , Células Vero , Proteínas Virales/genética , Virulencia/genética , Virulencia/fisiología , Replicación Viral/genética , Replicación Viral/fisiología , Zoonosis/epidemiología , Zoonosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA