Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
ERJ Open Res ; 10(4)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39193378

RESUMEN

Objectives: Lung disease progression in people with cystic fibrosis (pwCF) varies from one individual to another. Different immunological characteristics have been suggested to explain this variation, and we hypothesised that lung capacity may be associated with the innate immune response in pwCF. In an exploratory study, we aimed to investigate potential links between the innate immune response and lung function in pwCF using the standardised immune function assay TruCulture. Methods: In a single-centre study with combined cross-sectional and longitudinal data before and after intravenous antibiotics, blood was sampled from Pseudomonas aeruginosa-infected pwCF. Whole blood was analysed by TruCulture to reveal the unstimulated and stimulated cytokine release. Tobit regressions and Spearman's correlations were used to estimate the associations between lung function and cytokine release. Results: We included 52 pwCF in the cross-sectional study and 24 in the longitudinal study. In the cross-sectional study, we found that compared to a healthy population, the release of toll-like receptor (TLR)3, TLR4- and TLR7/8-stimulated interferon-γ, and interleukin (IL)-12p40 was reduced. Although TLR3-stimulated IL-1ß and IL-6 release increased with lung function, overall, cytokine release did not correlate well with lung function. In the longitudinal study, the cytokine release was modified by antibiotic treatment, but the cytokine release before antibiotic treatment did not associate with changes in lung function after treatment. Conclusion: The stimulated cytokine release could not predict lung function levels or changes in pwCF, but our data indicate that pwCF experience exhaustion in the innate immune response after years of chronic bacterial infection.

2.
Epilepsia Open ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140199

RESUMEN

OBJECTIVES: Dravet syndrome is a developmental and epileptic encephalopathy characterized by early onset epilepsy with multiple seizure types often intractable to treatment. Randomized clinical trials have demonstrated how treatment with fenfluramine significantly reduces seizure frequency in patients with Dravet syndrome. The study aims to (1) describe the efficacy and tolerability of fenfluramine in a Danish cohort of patients with Dravet syndrome; and (2) evaluate whether treatment with fenfluramine reduces epilepsy-related hospital contacts administrated by pediatricians or epilepsy-trained nurses. METHODS: A retrospective registry-based cohort study at the Danish Epilepsy Centre, Filadelfia, Dianalund, Denmark, enrolled 30 pediatric patients with Dravet syndrome treated with fenfluramine between 2017 and 2023. RESULTS: Thirty patients with Dravet syndrome (aged 3-21 years, 12 females) with a verified pathogenic SCN1A variant were included. They were treated with fenfluramine at a mean duration of 29 months with a mean maintenance dose of 0.5 mg/kg/day. The number of patient-years on treatment was 75 years. At last follow-up, 6 patients had discontinued treatment due to lack of efficacy or adverse effects. In the remaining 24 patients, generalized tonic-clonic seizures were reduced by ≥30% in 83%, by ≥50% in 67%, and by 100% in 25%. Additionally, 71% of the patients were reduced in concomitant anti-seizure medication, and 75% experienced a reduction (mean reduction at 52%, range 11%-94%) in epilepsy-related hospital contacts from baseline to the end of the treatment period. SIGNIFICANCE: Treatment with fenfluramine effectively reduced seizure frequency and concomitant antiseizure medication in patients with Dravet syndrome. Furthermore, a decrease in epilepsy-related contacts by 80% was observed over 6 years of treatment, which may indicate cost-effective benefits. PLAIN LANGUAGE SUMMARY: Patients with Dravet syndrome suffer from severe epileptic seizures that are difficult to treat with medication. Earlier, treatment with fenfluramine (an anti-seizure medication) has been documented to decrease the total number of seizures in patients with Dravet syndrome. This publication summarizes the experiences with fenfluramine in children with Dravet syndrome at the Danish Epilepsy Centre, Filadelfia, Dianalund, Denmark. Our publication also illustrates that treatment with fenfluramine may reduce the patients' number of yearly contacts with doctors and nurses specialized in epilepsy treatment, which may indicate cost-effectiveness.

3.
EBioMedicine ; 106: 105236, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38996765

RESUMEN

BACKGROUND: Variants in GABRB2, encoding the ß2 subunit of the γ-aminobutyric acid type A (GABAA) receptor, can result in a diverse range of conditions, ranging from febrile seizures to severe developmental and epileptic encephalopathies. However, the mechanisms underlying the risk of developing milder vs more severe forms of disorder remain unclear. In this study, we conducted a comprehensive genotype-phenotype correlation analysis in a cohort of individuals with GABRB2 variants. METHODS: Genetic and electroclinical data of 42 individuals harbouring 26 different GABRB2 variants were collected and accompanied by electrophysiological analysis of the effects of the variants on receptor function. FINDINGS: Electrophysiological assessments of α1ß2γ2 receptors revealed that 25/26 variants caused dysfunction to core receptor properties such as GABA sensitivity. Of these, 17 resulted in gain-of-function (GOF) while eight yielded loss-of-function traits (LOF). Genotype-phenotype correlation analysis revealed that individuals harbouring GOF variants suffered from severe developmental delay/intellectual disability (DD/ID, 74%), movement disorders such as dystonia or dyskinesia (59%), microcephaly (50%) and high risk of early mortality (26%). Conversely, LOF variants were associated with milder disease manifestations. Individuals with these variants typically exhibited fever-triggered seizures (92%), milder degrees of DD/ID (85%), and maintained ambulatory function (85%). Notably, severe movement disorders or microcephaly were not reported in individuals with loss-of-function variants. INTERPRETATION: The data reveals that genetic variants in GABRB2 can lead to both gain and loss-of-function, and this divergence is correlated with distinct disease manifestations. Utilising this information, we constructed a diagnostic flowchart that aids in predicting the pathogenicity of recently identified variants by considering clinical phenotypes. FUNDING: This work was funded by the Australian National Health & Medical Research Council, the Novo Nordisk Foundation and The Lundbeck Foundation.


Asunto(s)
Epilepsia , Estudios de Asociación Genética , Fenotipo , Receptores de GABA-A , Humanos , Receptores de GABA-A/genética , Masculino , Femenino , Epilepsia/genética , Niño , Preescolar , Mutación con Ganancia de Función , Mutación con Pérdida de Función , Trastornos del Neurodesarrollo/genética , Predisposición Genética a la Enfermedad , Adolescente , Lactante , Adulto , Genotipo , Alelos
4.
Epilepsia ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953796

RESUMEN

OBJECTIVE: DYNC1H1 variants are involved on a disease spectrum from neuromuscular disorders to neurodevelopmental disorders. DYNC1H1-related epilepsy has been reported in small cohorts. We dissect the electroclinical features of 34 patients harboring de novo DYNC1H1 pathogenic variants, identify subphenotypes on the DYNC1H1-related epilepsy spectrum, and compare the genotype-phenotype correlations observed in our cohort with the literature. METHODS: Patients harboring de novo DYNC1H1 pathogenic variants were recruited through international collaborations. Clinical data were retrospectively collected. Latent class analysis was performed to identify subphenotypes. Multivariable binary logistic regression analysis was applied to investigate the association with DYNC1H1 protein domains. RESULTS: DYNC1H1-related epilepsy presented with infantile epileptic spasms syndrome (IESS) in 17 subjects (50%), and in 25% of these individuals the epileptic phenotype evolved into Lennox-Gastaut syndrome (LGS). In 12 patients (35%), focal onset epilepsy was defined. In two patients, the epileptic phenotype consisted of generalized myoclonic epilepsy, with a progressive phenotype in one individual harboring a frameshift variant. In approximately 60% of our cohort, seizures were drug-resistant. Malformations of cortical development were noticed in 79% of our patients, mostly on the lissencephaly-pachygyria spectrum, particularly with posterior predominance in a half of them. Midline and infratentorial abnormalities were additionally reported in 45% and 27% of subjects. We have identified three main classes of subphenotypes on the DYNC1H1-related epilepsy spectrum. SIGNIFICANCE: We propose a classification in which pathogenic de novo DYNC1H1 variants feature drug-resistant IESS in half of cases with potential evolution to LGS (Class 1), developmental and epileptic encephalopathy other than IESS and LGS (Class 2), or less severe focal or genetic generalized epilepsy including a progressive phenotype (Class 3). We observed an association between stalk domain variants and Class 1 phenotypes. The variants p.Arg309His and p.Arg1962His were common and associated with Class 1 subphenotype in our cohort. These findings may aid genetic counseling of patients with DYNC1H1-related epilepsy.

5.
Clin Genet ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988293

RESUMEN

ANK3 encodes ankyrin-G, a protein involved in neuronal development and signaling. Alternative splicing gives rise to three ankyrin-G isoforms comprising different domains with distinct expression patterns. Mono- or biallelic ANK3 variants are associated with non-specific syndromic intellectual disability in 14 individuals (seven with monoallelic and seven with biallelic variants). In this study, we describe the clinical features of 13 additional individuals and review the data on a total of 27 individuals (16 individuals with monoallelic and 11 with biallelic ANK3 variants) and demonstrate that the phenotype for biallelic variants is more severe. The phenotypic features include language delay (92%), autism spectrum disorder (76%), intellectual disability (78%), hypotonia (65%), motor delay (68%), attention deficit disorder (ADD) or attention deficit hyperactivity disorder (ADHD) (57%), sleep disturbances (50%), aggressivity/self-injury (37.5%), and epilepsy (35%). A notable phenotypic difference was presence of ataxia in three individuals with biallelic variants, but in none of the individuals with monoallelic variants. While the majority of the monoallelic variants are predicted to result in a truncated protein, biallelic variants are almost exclusively missense. Moreover, mono- and biallelic variants appear to be localized differently across the three different ankyrin-G isoforms, suggesting isoform-specific pathological mechanisms.

6.
Pediatr Neurol ; 158: 17-25, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936258

RESUMEN

BACKGROUND: Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL) is associated to BPTF gene haploinsufficiency. Epilepsy was not included in the initial descriptions of NEDDFL, but emerging evidence indicates that epileptic seizures occur in some affected individuals. This study aims to investigate the electroclinical epilepsy features in individuals with NEDDFL. METHODS: We enrolled individuals with BPTF-related seizures or interictal epileptiform discharges (IEDs) on electroencephalography (EEG). Demographic, clinical, genetic, raw EEG, and neuroimaging data as well as response to antiseizure medication were assessed. RESULTS: We studied 11 individuals with a null variant in BPTF, including five previously unpublished ones. Median age at last observation was 9 years (range: 4 to 43 years). Eight individuals had epilepsy, one had a single unprovoked seizure, and two showed IEDs only. Key features included (1) early childhood epilepsy onset (median 4 years, range: 10 months to 7 years), (2) well-organized EEG background (all cases) and brief bursts of spikes and slow waves (50% of individuals), and (3) developmental delay preceding seizure onset. Spectrum of epilepsy severity varied from drug-resistant epilepsy (27%) to isolated IEDs without seizures (18%). Levetiracetam was widely used and reduced seizure frequency in 67% of the cases. CONCLUSIONS: Our study provides the first characterization of BPTF-related epilepsy. Early-childhood-onset epilepsy occurs in 19% of subjects, all presenting with a well-organized EEG background associated with generalized interictal epileptiform abnormalities in half of these cases. Drug resistance is rare.


Asunto(s)
Electroencefalografía , Epilepsia , Fenotipo , Humanos , Niño , Masculino , Femenino , Preescolar , Epilepsia/fisiopatología , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Adolescente , Adulto , Adulto Joven
7.
Epileptic Disord ; 26(4): 520-526, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38780451

RESUMEN

Pathogenic variants in CACNA1E are associated with early-onset epileptic and developmental encephalopathy (DEE). Severe to profound global developmental delay, early-onset refractory seizures, severe hypotonia, and macrocephaly are the main clinical features. Patients harboring the recurrent CACNA1E variant p.(Gly352Arg) typically present with the combination of early-onset DEE, dystonia/dyskinesia, and contractures. We describe a 2-year-and-11-month-old girl carrying the p.(Gly352Arg) CACNA1E variant. She has a severe DEE with very frequent drug-resistant seizures, profound hypotonia, and episodes of dystonia and dyskinesia. Long-term video-EEG-monitoring documented subsequent tonic asymmetric seizures during wakefulness and mild paroxysmal dyskinesias of the trunk out of sleep which were thought to be a movement disorder and instead turned out to be focal hyperkinetic seizures. This is the first documented description of the EEG findings in this disorder. Our report highlights a possible overlap between cortical and subcortical phenomena in CACNA1E-DEE. We also underline how a careful electro-clinical evaluation might be necessary for a correct discernment between the two disorders, playing a fundamental role in the clinical assessment and proper management of children with CACNA1E-DEE.


Asunto(s)
Electroencefalografía , Humanos , Femenino , Preescolar , Convulsiones/genética , Convulsiones/fisiopatología , Trastornos del Movimiento/genética , Trastornos del Movimiento/fisiopatología
8.
J Cyst Fibros ; 23(5): 885-895, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38702223

RESUMEN

BACKGROUND: Excessive inflammation and recurrent airway infections characterize people with cystic fibrosis (pwCF), a disease with highly heterogeneous clinical outcomes. How the overall immune response is affected in pwCF, its relationships with the lung microbiome, and the source of clinical heterogeneity have not been fully elucidated. METHODS: Peripheral blood and sputum samples were collected from 28 pwCF and an age-matched control group. Systemic immune cell subsets and surface markers were quantified using multiparameter flow cytometry. Lung microbiome composition was reconstructed using metatranscriptomics on sputum samples, and microbial taxa were correlated to circulating immune cells and surface markers expression. RESULTS: In pwCF, we found a specific systemic immune profile characterized by widespread hyperactivation and altered frequencies of several subsets. These included substantial changes in B-cell subsets, enrichment of CD35+/CD49d+ neutrophils, and reduction in dendritic cells. Activation markers and checkpoint molecule expression levels differed from healthy subjects. CTLA-4 expression was increased in Tregs and, together with impaired B-cell subsets, correlated with patients' lung function. Concentrations and frequencies of key immune cells and marker expression correlated with the relative abundance of commensal and pathogenic bacteria in the lungs. CONCLUSION: The CF-specific immune signature, involving hyperactivation, immune dysregulation with alteration in Treg homeostasis, and impaired B-cell function, is a potential source of lung function heterogeneity. The activity of specific microbes contributes to disrupting the balance of the immune response. Our data provide a unique foundation for identifying novel markers and immunomodulatory targets to develop the future of cystic fibrosis treatment and management.


Asunto(s)
Fibrosis Quística , Microbiota , Esputo , Humanos , Fibrosis Quística/microbiología , Fibrosis Quística/inmunología , Masculino , Femenino , Esputo/microbiología , Esputo/inmunología , Microbiota/inmunología , Pulmón/inmunología , Pulmón/microbiología , Adulto , Pruebas de Función Respiratoria/métodos , Citometría de Flujo
9.
Methods Mol Biol ; 2799: 1-11, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38727899

RESUMEN

N-methyl-D-aspartate receptors (NMDAR) are ligand-gated ion channels mediating excitatory neurotransmission and are important for normal brain development, cognitive abilities, and motor functions. Pathogenic variants in the Glutamate receptor Ionotropic N-methyl-D-aspartate (GRIN) genes (GRIN1, GRIN2A-D) encoding NMDAR subunits have been associated with a wide spectrum of neurodevelopmental disorders and epilepsies ranging from treatable focal epilepsies to devastating early-onset developmental and epileptic encephalopathies. Genetic variants in NMDA receptor genes can cause a range of complex alterations to receptor properties resulting in various degrees of loss-of-function, gain-of-function, or mixtures thereof. Understanding how genetic variants affect the function of the receptors, therefore, represents an important first step in the ongoing development towards targeted therapies. Currently, targeted treatment options for GRIN-related diseases are limited. However, treatment with memantine has been reported to significantly reduce seizure frequency in a few individuals with developmental and epileptic encephalopathies harboring de novo gain-of-function GRIN2A missense variants, and supplementary treatment with L-serine has been associated with improved motor and cognitive performance as well as reduced seizure frequency in patients with GRIN2B loss-of-function missense variants as well as GRIN2A and GRIN2B null variants.


Asunto(s)
Epilepsia , Trastornos del Neurodesarrollo , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Humanos , Trastornos del Neurodesarrollo/genética , Epilepsia/genética , Epilepsia/tratamiento farmacológico , Predisposición Genética a la Enfermedad , Variación Genética , Memantina/uso terapéutico , Memantina/farmacología
10.
Am J Hum Genet ; 111(6): 1222-1238, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38781976

RESUMEN

Heterozygous variants in SLC6A1, encoding the GAT-1 GABA transporter, are associated with seizures, developmental delay, and autism. The majority of affected individuals carry missense variants, many of which are recurrent germline de novo mutations, raising the possibility of gain-of-function or dominant-negative effects. To understand the functional consequences, we performed an in vitro GABA uptake assay for 213 unique variants, including 24 control variants. De novo variants consistently resulted in a decrease in GABA uptake, in keeping with haploinsufficiency underlying all neurodevelopmental phenotypes. Where present, ClinVar pathogenicity reports correlated well with GABA uptake data; the functional data can inform future reports for the remaining 72% of unscored variants. Surface localization was assessed for 86 variants; two-thirds of loss-of-function missense variants prevented GAT-1 from being present on the membrane while GAT-1 was on the surface but with reduced activity for the remaining third. Surprisingly, recurrent de novo missense variants showed moderate loss-of-function effects that reduced GABA uptake with no evidence for dominant-negative or gain-of-function effects. Using linear regression across multiple missense severity scores to extrapolate the functional data to all potential SLC6A1 missense variants, we observe an abundance of GAT-1 residues that are sensitive to substitution. The extent of this missense vulnerability accounts for the clinically observed missense enrichment; overlap with hypermutable CpG sites accounts for the recurrent missense variants. Strategies to increase the expression of the wild-type SLC6A1 allele are likely to be beneficial across neurodevelopmental disorders, though the developmental stage and extent of required rescue remain unknown.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática , Haploinsuficiencia , Mutación Missense , Humanos , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Haploinsuficiencia/genética , Ácido gamma-Aminobutírico/metabolismo , Trastornos del Neurodesarrollo/genética , Discapacidades del Desarrollo/genética , Trastorno Autístico/genética , Células HEK293
11.
medRxiv ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562733

RESUMEN

Hyperpolarization activated Cyclic Nucleotide (HCN) gated channels are crucial for various neurophysiological functions, including learning and sensory functions, and their dysfunction are responsible for brain disorders, such as epilepsy. To date, HCN2 variants have only been associated with mild epilepsy and recently, one monoallelic missense variant has been linked to developmental and epileptic encephalopathy. Here, we expand the phenotypic spectrum of HCN2- related disorders by describing twenty-one additional individuals from fifteen unrelated families carrying HCN2 variants. Seventeen individuals had developmental delay/intellectual disability (DD/ID), two had borderline DD/ID, and one had borderline DD. Ten individuals had epilepsy with DD/ID, with median age of onset of 10 months, and one had epilepsy with normal development. Molecular diagnosis identified thirteen different pathogenic HCN2 variants, including eleven missense variants affecting highly conserved amino acids, one frameshift variant, and one in-frame deletion. Seven variants were monoallelic of which five occurred de novo, one was not maternally inherited, one was inherited from a father with mild learning disabilities, and one was of unknown inheritance. The remaining six variants were biallelic, with four homozygous and two compound heterozygous variants. Functional studies using two-electrode voltage-clamp recordings in Xenopus laevis oocytes were performed on three monoallelic variants, p.(Arg324His), p.(Ala363Val), and p.(Met374Leu), and three biallelic variants, p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp). The p.(Arg324His) variant induced a strong increase of HCN2 conductance, while p.(Ala363Val) and p.(Met374Leu) displayed dominant negative effects, leading to a partial loss of HCN2 channel function. By confocal imaging, we found that the p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp) pathogenic variants impaired membrane trafficking, resulting in a complete loss of HCN2 elicited currents in Xenopus oocytes. Structural 3D-analysis in depolarized and hyperpolarized states of HCN2 channels, revealed that the pathogenic variants p.(His205Gln), p.(Ser409Leu), p.(Arg324Cys), p.(Asn369Ser) and p.(Gly460Asp) modify molecular interactions altering HCN2 function. Taken together, our data broadens the clinical spectrum associated with HCN2 variants, and disclose that HCN2 is involved in developmental encephalopathy with or without epilepsy.

12.
Epilepsia Open ; 9(3): 832-849, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38450883

RESUMEN

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a developmental and epileptic encephalopathy caused by variants in the CDKL5 gene. The disorder is characterized by intractable early-onset seizures, severe neurodevelopmental delay, hypotonia, motor disabilities, cerebral (cortical) visual impairment and microcephaly. With no disease-modifying therapies available for CDD, treatment is symptomatic with an initial focus on seizure control. Another unmet need in the management of people with CDD is the lack of evidence to aid standardized care and guideline development. To address this gap, experts in CDD and representatives from patient advocacy groups from Denmark, Finland, France, Germany, Italy, Poland, Spain, and the United Kingdom convened to form an Expert Working Group. The aim was to provide an expert opinion consensus on how to ensure quality care in routine clinical practice within the European setting, including in settings with limited experience or resources for multidisciplinary care of CDD and other developmental and epileptic encephalopathies. By means of one-to-one interviews around the current treatment landscape in CDD, insights from the Expert Working Group were collated and developed into a Europe-specific patient journey for individuals with CDD, which was later validated by the group. Further discussions followed to gain consensus of opinions on challenges and potential solutions for achieving quality care in this setting. The panel recognized the benefit of early genetic testing, a holistic personalized approach to seizure control (taking into consideration various factors such as concomitant medications and comorbidities), and age- and comorbidity-dependent multidisciplinary care for optimizing patient outcomes and quality of life. However, their insights and experiences also highlighted much disparity in management approaches and resources across different European countries. Development of standardized European recommendations is required to align realistic diagnostic criteria, treatment goals, and management approaches that can be adapted for different settings. PLAIN LANGUAGE SUMMARY: Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare condition caused by a genetic mutation with a broad range of symptoms apparent from early childhood, including epileptic seizures that do not respond to medication and severe delays in development. Due to the lack of guidance on managing CDD, international experts and patient advocates discussed best practices in the care of people with CDD in Europe. The panel agreed that early testing, a personalized approach to managing seizures, and access to care from different disciplines are beneficial. Development of guidelines to ensure that care is standardized would also be valuable.


Asunto(s)
Síndromes Epilépticos , Calidad de la Atención de Salud , Humanos , Europa (Continente) , Síndromes Epilépticos/terapia , Síndromes Epilépticos/diagnóstico , Testimonio de Experto , Proteínas Serina-Treonina Quinasas/genética , Epilepsia/terapia , Espasmos Infantiles/terapia
13.
Stem Cell Res ; 76: 103372, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458029

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are early-onset conditions that cause intractable seizures and developmental delays. Missense variants in Gamma-aminobutyric acid type A receptor (GABAAR) subunits commonly cause DEEs. Ahring et al. (2022) showed a variant in the gene that encodes the delta subunit (GABRD) is strongly associated with the gain-of-function of extrasynaptic GABAAR. Here, we report the generation of two patient-specific human induced pluripotent stem cells (hiPSC) lines with (i) a de novo variant and (ii) a maternal variant, both for the pathogenic GABRD c.872 C>T, (p.T291I). The variants in the generated cell line were corrected using the CRISPR-Cas9 gene editing technique (respective isogenic control lines).


Asunto(s)
Epilepsia , Células Madre Pluripotentes Inducidas , Humanos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Epilepsia/genética , Mutación Missense , Edición Génica
14.
Epileptic Disord ; 26(2): 219-224, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436508

RESUMEN

Pathogenic variants in SCN8A are associated with a broad phenotypic spectrum, including Self-Limiting Familial Infantile Epilepsy (SeLFIE), characterized by infancy-onset age-related seizures with normal development and cognition. Movement disorders, particularly paroxysmal kinesigenic dyskinesia typically arising after puberty, may represent another core symptom. We present the case of a 1-year-old girl with a familial disposition to self-limiting focal seizures from the maternal side and early-onset orofacial movement disorders associated with SCN8A-SeLFIE. Brain MRI was normal. Genetic testing revealed a maternally inherited SCN8A variant [c.4447G > A; p.(Glu1483Lys)]. After the introduction of valproic acid, she promptly achieved seizure control as well as complete remission of strabismus and a significant decrease in episodes of tongue deviation. Family history, genetic findings, and epilepsy phenotype are consistent with SCN8A-SeLFIE. Movement disorders are an important part of the SCN8A phenotypic spectrum, and this case highlights the novel early-onset orofacial movement disorders associated with this condition. The episodes of tongue deviation and protrusion suggest focal oromandibular (lingual) dystonia. Additionally, while infantile strabismus or esophoria is a common finding in healthy individuals, our case raises the possibility of an ictal origin of the strabismus. This study underscores the importance of recognizing and addressing movement disorders in SCN8A-SeLFIE patients, particularly the rare early-onset orofacial manifestations. It adds to the growing body of knowledge regarding the diverse clinical presentations of SCN8A-associated disorders and suggests potential avenues for clinical management and further research.


Asunto(s)
Distonía , Trastornos Distónicos , Epilepsia , Síndromes Epilépticos , Trastornos del Movimiento , Estrabismo , Femenino , Humanos , Lactante , Distonía/genética , Trastornos Distónicos/genética , Epilepsia/diagnóstico , Síndromes Epilépticos/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Convulsiones/genética , Estrabismo/genética
15.
Epilepsia ; 65(4): 1046-1059, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38410936

RESUMEN

OBJECTIVE: SCN1A variants are associated with epilepsy syndromes ranging from mild genetic epilepsy with febrile seizures plus (GEFS+) to severe Dravet syndrome (DS). Many variants are de novo, making early phenotype prediction difficult, and genotype-phenotype associations remain poorly understood. METHODS: We assessed data from a retrospective cohort of 1018 individuals with SCN1A-related epilepsies. We explored relationships between variant characteristics (position, in silico prediction scores: Combined Annotation Dependent Depletion (CADD), Rare Exome Variant Ensemble Learner (REVEL), SCN1A genetic score), seizure characteristics, and epilepsy phenotype. RESULTS: DS had earlier seizure onset than other GEFS+ phenotypes (5.3 vs. 12.0 months, p < .001). In silico variant scores were higher in DS versus GEFS+ (p < .001). Patients with missense variants in functionally important regions (conserved N-terminus, S4-S6) exhibited earlier seizure onset (6.0 vs. 7.0 months, p = .003) and were more likely to have DS (280/340); those with missense variants in nonconserved regions had later onset (10.0 vs. 7.0 months, p = .036) and were more likely to have GEFS+ (15/29, χ2 = 19.16, p < .001). A minority of protein-truncating variants were associated with GEFS+ (10/393) and more likely to be located in the proximal first and last exon coding regions than elsewhere in the gene (9.7% vs. 1.0%, p < .001). Carriers of the same missense variant exhibited less variability in age at seizure onset compared with carriers of different missense variants for both DS (1.9 vs. 2.9 months, p = .001) and GEFS+ (8.0 vs. 11.0 months, p = .043). Status epilepticus as presenting seizure type is a highly specific (95.2%) but nonsensitive (32.7%) feature of DS. SIGNIFICANCE: Understanding genotype-phenotype associations in SCN1A-related epilepsies is critical for early diagnosis and management. We demonstrate an earlier disease onset in patients with missense variants in important functional regions, the occurrence of GEFS+ truncating variants, and the value of in silico prediction scores. Status epilepticus as initial seizure type is a highly specific, but not sensitive, early feature of DS.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Convulsiones Febriles , Estado Epiléptico , Humanos , Estudios Retrospectivos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Epilepsia/genética , Epilepsia/diagnóstico , Epilepsias Mioclónicas/genética , Convulsiones Febriles/genética , Fenotipo , Estudios de Asociación Genética , Mutación/genética
16.
Transl Psychiatry ; 14(1): 65, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280856

RESUMEN

Clustering Epilepsy (CE) is an epileptic disorder with neurological comorbidities caused by heterozygous variants of the X chromosome gene Protocadherin 19 (PCDH19). Recent studies have implicated dysregulation of the Nuclear Hormone Receptor (NHR) pathway in CE pathogenesis. To obtain a comprehensive overview of the impact and mechanisms of loss of PCDH19 function in CE pathogenesis, we have performed epigenomic, transcriptomic and proteomic analysis of CE relevant models. Our studies identified differential regulation and expression of Androgen Receptor (AR) and its targets in CE patient skin fibroblasts. Furthermore, our cell culture assays revealed the repression of PCDH19 expression mediated through ERα and the co-regulator FOXA1. We also identified a protein-protein interaction between PCDH19 and AR, expanding upon the intrinsic link between PCDH19 and the NHR pathway. Together, these results point to a novel mechanism of NHR signaling in the pathogenesis of CE that can be explored for potential therapeutic options.


Asunto(s)
Cadherinas , Epilepsia , Humanos , Cadherinas/genética , Protocadherinas , Multiómica , Proteómica , Epilepsia/genética , Análisis por Conglomerados
17.
Neurotherapeutics ; 21(1): e00296, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241158

RESUMEN

While loss-of-function (LoF) variants in KCNQ2 are associated with a spectrum of neonatal-onset epilepsies, gain-of-function (GoF) variants cause a more complex phenotype that precludes neonatal-onset epilepsy. In the present work, the clinical features of three patients carrying a de novo KCNQ2 Y141N (n â€‹= â€‹1) or G239S variant (n â€‹= â€‹2) respectively, are described. All three patients had a mild global developmental delay, with prominent language deficits, and strong activation of interictal epileptic activity during sleep. Epileptic seizures were not reported. The absence of neonatal seizures suggested a GoF effect and prompted functional testing of the variants. In vitro whole-cell patch-clamp electrophysiological experiments in Chinese Hamster Ovary cells transiently-transfected with the cDNAs encoding Kv7.2 subunits carrying the Y141N or G239S variants in homomeric or heteromeric configurations with Kv7.2 subunits, revealed that currents from channels incorporating mutant subunits displayed increased current densities and hyperpolarizing shifts of about 10 â€‹mV in activation gating; both these functional features are consistent with an in vitro GoF phenotype. The antidepressant drug amitriptyline induced a reversible and concentration-dependent inhibition of current carried by Kv7.2 Y141N and G239S mutant channels. Based on in vitro results, amitriptyline was prescribed in one patient (G239S), prompting a significant improvement in motor, verbal, social, sensory and adaptive behavior skillsduring the two-year-treatment period. Thus, our results suggest that KCNQ2 GoF variants Y141N and G239S cause a mild DD with prominent language deficits in the absence of neonatal seizures and that treatment with the Kv7 channel blocker amitriptyline might represent a potential targeted treatment for patients with KCNQ2 GoF variants.


Asunto(s)
Amitriptilina , Epilepsia , Recién Nacido , Cricetinae , Animales , Humanos , Cricetulus , Células CHO , Mutación con Ganancia de Función , Fenotipo , Convulsiones , Canal de Potasio KCNQ2/genética
18.
Brain ; 147(1): 224-239, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37647766

RESUMEN

Genetic variants associated with developmental and epileptic encephalopathies have been identified in the GABRB3 gene that encodes the ß3 subunit of GABAA receptors. Typically, variants alter receptor sensitivity to GABA resulting in either gain- or loss-of-function, which correlates with patient phenotypes. However, it is unclear how another important receptor property, desensitization, contributes to the greater clinical severity of gain-of-function variants. Desensitization properties of 20 gain-of-function GABRB3 variant receptors were evaluated using two-electrode voltage-clamp electrophysiology. The parameters measured included current decay rates and steady-state currents. Selected variants with increased or reduced desensitization were also evaluated using whole-cell electrophysiology in transfected mammalian cell lines. Of the 20 gain-of-function variants assessed, 13 were found to alter receptor desensitization properties. Seven variants reduced desensitization at equilibrium, which acts to worsen gain-of-function traits. Six variants accelerated current decay kinetics, which limits gain-of-function traits. All affected patients displayed severe clinical phenotypes with intellectual disability and difficult-to-treat epilepsy. Nevertheless, variants that reduced desensitization at equilibrium were associated with more severe clinical outcomes. This included younger age of first seizure onset (median 0.5 months), movement disorders (dystonia and dyskinesia), epilepsy of infancy with migrating focal seizures (EIMFS) and risk of early mortality. Variants that accelerated current decay kinetics were associated with slightly milder phenotypes with later seizure onset (median 4 months), unclassifiable developmental and epileptic encephalopathies or Lennox-Gastaut syndrome and no movement disorders. Our study reveals that gain-of-function GABRB3 variants can increase or decrease receptor desensitization properties and that there is a correlation with the degree of disease severity. Variants that reduced the desensitization at equilibrium were clustered in the transmembrane regions that constitute the channel pore and correlated with greater disease severity, while variants that accelerated current decay were clustered in the coupling loops responsible for receptor activation and correlated with lesser severity.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Trastornos del Movimiento , Animales , Humanos , Recién Nacido , Mutación con Ganancia de Función , Mutación/genética , Epilepsia/genética , Convulsiones , Mamíferos/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
19.
Epilepsia ; 65(4): 1029-1045, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135915

RESUMEN

OBJECTIVE: The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy. METHODS: We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician. RESULTS: A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants. SIGNIFICANCE: Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG.


Asunto(s)
Encefalopatías , Epilepsia Generalizada , Epilepsia , Discapacidad Intelectual , Humanos , Estudios Retrospectivos , Hipotonía Muscular , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Epilepsia/complicaciones , Encefalopatías/genética , Convulsiones/complicaciones , Epilepsia Generalizada/complicaciones , Electroencefalografía/métodos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Homólogo 4 de la Proteína Discs Large/genética
20.
Front Neurosci ; 17: 1216653, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662110

RESUMEN

Introduction: SLC6A1 is one of the most common monogenic causes of epilepsy and is a well-established cause of neurodevelopmental disorders. SLC6A1-neurodevelopmental disorders have a consistent phenotype of mild to severe intellectual disability (ID), epilepsy, language delay and behavioral disorders. This phenotypic description is mainly based on knowledge from the pediatric population. Method: Here, we sought to describe patients with SLC6A1 variants and age above 18 years through the ascertainment of published and unpublished patients. Unpublished patients were ascertained through international collaborations, while previously published patients were collected through a literature search. Results: A total of 15 adult patients with SLC6A1 variants were included. 9/13 patients had moderate to severe ID (data not available in two). Epilepsy was prevalent (11/15) with seizure types such as absence, myoclonic, atonic, and tonic-clonic seizures. Epilepsy was refractory in 7/11, while four patients were seizure free with lamotrigine, valproate, or lamotrigine in combination with valproate. Language development was severely impaired in five patients. Behavioral disorders were reported in and mainly consisted of autism spectrum disorders and aggressive behavior. Schizophrenia was not reported in any of the patients. Discussion: The phenotype displayed in the adult patients presented here resembled that of the pediatric cohort with ID, epilepsy, and behavioral disturbances, indicating that the phenotype of SLC6A1-NDD is consistent over time. Seizures were refractory in >60% of the patients with epilepsy, indicating the lack of targeted treatment in SLC6A1-NDDs. With increased focus on repurposing drugs and on the development of new treatments, hope is that the outlook reflected here will change over time. ID appeared to be more severe in the adult patients, albeit this might reflect a recruitment bias, where only patients seen in specialized centers were included or it might be a feature of the natural history of SLC6A1-NDDs. This issue warrants to be explored in further studies in larger cohorts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...