Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hepatology ; 59(5): 1900-11, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24395596

RESUMEN

UNLABELLED: Hepatocarcinogenesis is a stepwise process. It involves several genetic and epigenetic alterations, e.g., loss of tumor suppressor gene expression (TP53, PTEN, RB) as well as activation of oncogenes (c-MYC, MET, BRAF, RAS). However, the role of RNA-binding proteins (RBPs), which regulate tumor suppressor and oncogene expression at the posttranscriptional level, are not well understood in hepatocellular carcinoma (HCC). Here we analyzed RBPs induced in human liver cancer, revealing 116 RBPs with a significant and more than 2-fold higher expression in HCC compared to normal liver tissue. We focused our subsequent analyses on the Insulin-like growth factor 2 messenger RNA (mRNA)-binding protein 1 (IGF2BP1) representing the most strongly up-regulated RBP in HCC in our cohort. Depletion of IGF2BP1 from multiple liver cancer cell lines inhibits proliferation and induces apoptosis in vitro. Accordingly, murine xenograft assays after stable depletion of IGF2BP1 reveal that tumor growth, but not tumor initiation, strongly depends on IGF2BP1 in vivo. At the molecular level, IGF2BP1 binds to and stabilizes the c-MYC and MKI67 mRNAs and increases c-Myc and Ki-67 protein expression, two potent regulators of cell proliferation and apoptosis. These substrates likely mediate the impact of IGF2BP1 in human liver cancer, but certainly additional target genes contribute to its function. CONCLUSION: The RNA-binding protein IGF2BP1 is an important protumorigenic factor in liver carcinogenesis. Hence, therapeutic targeting of IGF2BP1 may offer options for intervention in human HCC.


Asunto(s)
Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/etiología , Proteínas de Unión al ARN/fisiología , Apoptosis , Carcinoma Hepatocelular/patología , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Antígeno Ki-67/genética , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas de Unión al ARN/genética
2.
Cell Mol Life Sci ; 70(15): 2657-75, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23069990

RESUMEN

The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, IGF2BP3) belong to a conserved family of RNA-binding, oncofetal proteins. Several studies have shown that these proteins act in various important aspects of cell function, such as cell polarization, migration, morphology, metabolism, proliferation and differentiation. In this review, we discuss the IGF2BP family's role in cancer biology and how this correlates with their proposed functions during embryogenesis. IGF2BPs are mainly expressed in the embryo, in contrast with comparatively lower or negotiable levels in adult tissues. IGF2BP1 and IGF2BP3 have been found to be re-expressed in several aggressive cancer types. Control of IGF2BPs' expression is not well understood; however, let-7 microRNAs, ß-catenin (CTNNB1) and MYC have been proposed to be involved in their regulation. In contrast to many other RNA-binding proteins, IGF2BPs are almost exclusively observed in the cytoplasm where they associate with target mRNAs in cytoplasmic ribonucleoprotein complexes (mRNPs). During development, IGF2BPs are required for proper nerve cell migration and morphological development, presumably involving the control of cytoskeletal remodeling and dynamics, respectively. Likewise, IGF2BPs modulate cell polarization, adhesion and migration in tumor-derived cells. Moreover, they are highly associated with cancer metastasis and the expression of oncogenic factors (KRAS, MYC and MDR1). However, a pro-metastatic role of IGF2BPs remains controversial due to the lack of 'classical' in vivo studies. Nonetheless, IGF2BPs could provide valuable targets in cancer treatment with many of their in vivo roles to be fully elucidated.


Asunto(s)
Desarrollo Embrionario/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Modelos Biológicos , Neoplasias/fisiopatología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Gránulos Citoplasmáticos/metabolismo , Humanos , Familia de Multigenes/genética , Neoplasias/metabolismo , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/metabolismo , beta Catenina/metabolismo
3.
Mol Cell Endocrinol ; 358(1): 96-103, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22465205

RESUMEN

Insulin-like growth factors (IGFs) are well-known regulators of embryonic growth and differentiation. IGF function is closely related to insulin action. IGFs are available to the preimplantation embryo through maternal blood (endocrine action), uterine secretions (paracrine action) and by the embryo itself (autocrine action). In rabbit blastocysts, embryonic IGF1 and IGF2 are specifically strong in the embryoblast (ICM). Signalling of IGFs and insulin in blastocysts follows the classical pathway with Erk1/2 and Akt kinase activation. The aim of this study was to analyse signalling of IGFs in experimental insulin dependent diabetes (exp IDD) in pregnancy, employing a diabetic rabbit model with uterine hypoinsulinemia and hyperglycaemia. Exp IDD was induced in female rabbits by alloxan treatment prior to mating. At 6 days p.c., the maternal and embryonic IGFs were quantified by RT-PCR and ELISA. In pregnant females, hepatic IGF1 expression and IGF1 serum levels were decreased while IGF1 and IGF2 were increased in endometrium. In blastocysts, IGF1 RNA and protein was approx. 7.5-fold and 2-fold higher, respectively, than in controls from normoglycemic females. In cultured control blastocysts supplemented with IGF1 or insulin in vitro for 1 or 12 h, IGF1 and insulin receptors as well as IGF1 and IGF2 were downregulated. In cultured T1D blastocysts activation of Akt and Erk1/2 was impaired with lower amounts of total Akt and Erk1/2 protein and a reduced phosphorylation capacity after IGF1 supplementation. Our data show that the IGF axis is severely altered in embryo-maternal interactions in exp IDD pregnancy. Both, the endometrium and the blastocyst produce more IGF1 and IGF2. The increased endogenous IGF1 and IGF2 expression by the blastocyst compensates for the loss of systemic insulin and IGF. However, this counterbalance does not fill the gap of the reduced insulin/IGF sensitivity, leading to a developmental delay of blastocysts in exp IDD pregnancy.


Asunto(s)
Blastocisto/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Embarazo en Diabéticas/metabolismo , Útero/metabolismo , Aloxano , Animales , Blastocisto/citología , Diferenciación Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Endometrio/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/biosíntesis , Femenino , Hiperglucemia , Fosforilación , Embarazo , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Conejos , Receptor IGF Tipo 1/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...