Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Neurol Genet ; 10(2): e200146, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38617198

RESUMEN

Background and Objectives: Hexokinase 1 (encoded by HK1) catalyzes the first step of glycolysis, the adenosine triphosphate-dependent phosphorylation of glucose to glucose-6-phosphate. Monoallelic HK1 variants causing a neurodevelopmental disorder (NDD) have been reported in 12 individuals. Methods: We investigated clinical phenotypes, brain MRIs, and the CSF of 15 previously unpublished individuals with monoallelic HK1 variants and an NDD phenotype. Results: All individuals had recurrent variants likely causing gain-of-function, representing mutational hot spots. Eight individuals (c.1370C>T) had a developmental and epileptic encephalopathy with infantile onset and virtually no development. Of the other 7 individuals (n = 6: c.1334C>T; n = 1: c.1240G>A), 3 adults showed a biphasic course of disease with a mild static encephalopathy since early childhood and an unanticipated progressive deterioration with, e.g., movement disorder, psychiatric disease, and stroke-like episodes, epilepsy, starting in adulthood. Individuals who clinically presented in the first months of life had (near)-normal initial neuroimaging and severe cerebral atrophy during follow-up. In older children and adults, we noted progressive involvement of basal ganglia including Leigh-like MRI patterns and cerebellar atrophy, with remarkable intraindividual variability. The CSF glucose and the CSF/blood glucose ratio were below the 5th percentile of normal in almost all CSF samples, while blood glucose was unremarkable. This biomarker profile resembles glucose transporter type 1 deficiency syndrome; however, in HK1-related NDD, CSF lactate was significantly increased in all patients resulting in a substantially different biomarker profile. Discussion: Genotype-phenotype correlations appear to exist for HK1 variants and can aid in counseling. A CSF biomarker profile with low glucose, low CSF/blood glucose, and high CSF lactate may point toward monoallelic HK1 variants causing an NDD. This can help in variant interpretation and may aid in understanding the pathomechanism. We hypothesize that progressive intoxication and/or ongoing energy deficiency lead to the clinical phenotypes and progressive neuroimaging findings.

2.
Genet Med ; 25(11): 100938, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37454282

RESUMEN

PURPOSE: Biallelic variants in TARS2, encoding the mitochondrial threonyl-tRNA-synthetase, have been reported in a small group of individuals displaying a neurodevelopmental phenotype but with limited neuroradiological data and insufficient evidence for causality of the variants. METHODS: Exome or genome sequencing was carried out in 15 families. Clinical and neuroradiological evaluation was performed for all affected individuals, including review of 10 previously reported individuals. The pathogenicity of TARS2 variants was evaluated using in vitro assays and a zebrafish model. RESULTS: We report 18 new individuals harboring biallelic TARS2 variants. Phenotypically, these individuals show developmental delay/intellectual disability, regression, cerebellar and cerebral atrophy, basal ganglia signal alterations, hypotonia, cerebellar signs, and increased blood lactate. In vitro studies showed that variants within the TARS2301-381 region had decreased binding to Rag GTPases, likely impairing mTORC1 activity. The zebrafish model recapitulated key features of the human phenotype and unraveled dysregulation of downstream targets of mTORC1 signaling. Functional testing of the variants confirmed the pathogenicity in a zebrafish model. CONCLUSION: We define the clinico-radiological spectrum of TARS2-related mitochondrial disease, unveil the likely involvement of the mTORC1 signaling pathway as a distinct molecular mechanism, and establish a TARS2 zebrafish model as an important tool to study variant pathogenicity.


Asunto(s)
ARN de Transferencia , Pez Cebra , Animales , Humanos , Mutación , Pez Cebra/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ligasas , Fenotipo
3.
J Inherit Metab Dis ; 46(2): 220-231, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36266255

RESUMEN

The SARS-CoV-2 pandemic challenges healthcare systems worldwide. Within inherited metabolic disorders (IMDs) the vulnerable subgroup of intoxication-type IMDs such as organic acidurias (OA) and urea cycle disorders (UCD) show risk for infection-induced morbidity and mortality. This study (observation period February 2020 to December 2021) evaluates impact on medical health care as well as disease course and outcome of SARS-CoV-2 infections in patients with intoxication-type IMDs managed by participants of the European Registry and Network for intoxication type metabolic diseases Consortium (E-IMD). Survey's respondents managing 792 patients (n = 479 pediatric; n = 313 adult) with intoxication-type IMDs (n = 454 OA; n = 338 UCD) in 14 countries reported on 59 (OA: n = 36; UCD: n = 23), SARS-CoV-2 infections (7.4%). Medical services were increasingly requested (95%), mostly alleviated by remote technologies (86%). Problems with medical supply were scarce (5%). Regular follow-up visits were reduced in 41% (range 10%-50%). Most infected individuals (49/59; 83%) showed mild clinical symptoms, while 10 patients (17%; n = 6 OA including four transplanted MMA patients; n = 4 UCD) were hospitalized (metabolic decompensation in 30%). ICU treatment was not reported. Hospitalization rate did not differ for diagnosis or age group (p = 0.778). Survival rate was 100%. Full recovery was reported for 100% in outpatient care and 90% of hospitalized individuals. SARS-CoV-2 impacts health care of individuals with intoxication-type IMDs worldwide. Most infected individuals, however, showed mild symptoms and did not require hospitalization. SARS-CoV-2-induced metabolic decompensations were usually mild without increased risk for ICU treatment. Overall prognosis of infected individuals is very promising and IMD-specific or COVID-19-related complications have not been observed.


Asunto(s)
COVID-19 , Enfermedades Metabólicas , Trastornos Innatos del Ciclo de la Urea , Adulto , Humanos , Niño , SARS-CoV-2 , Pandemias , Trastornos Innatos del Ciclo de la Urea/complicaciones
4.
J Inherit Metab Dis ; 46(3): 482-519, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36221165

RESUMEN

Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Encefalopatías Metabólicas , Humanos , Glutaril-CoA Deshidrogenasa , Lisina/metabolismo , Encefalopatías Metabólicas/diagnóstico , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/terapia , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Glutaratos/metabolismo
5.
J Inherit Metab Dis ; 45(6): 1070-1081, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054426

RESUMEN

To prevent maternal phenylketonuria (PKU) syndrome low phenylalanine concentrations (target range, 120-360 µmol/L) during pregnancy are recommended for women with PKU. We evaluated the feasibility and effectiveness of current recommendations and identified factors influencing maternal metabolic control and children's outcome. Retrospective study of first successfully completed pregnancies of 85 women with PKU from 12 German centers using historical data and interviews with the women. Children's outcome was evaluated by standardized IQ tests and parental rating of child behavior. Seventy-four percent (63/85) of women started treatment before conception, 64% (54/85) reached the phenylalanine target range before conception. Pregnancy planning resulted in earlier achievement of the phenylalanine target (18 weeks before conception planned vs. 11 weeks of gestation unplanned, p < 0.001) and lower plasma phenylalanine concentrations during pregnancy, particularly in the first trimester (0-7 weeks of gestation: 247 µmol/L planned vs. 467 µmol/L unplanned, p < 0.0001; 8-12 weeks of gestation: 235 µmol/L planned vs. 414 µmol/L unplanned, p < 0.001). Preconceptual dietary training increased the success rate of achieving the phenylalanine target before conception compared to women without training (19 weeks before conception vs. 9 weeks of gestation, p < 0.001). The majority (93%) of children had normal IQ (mean 103, median age 7.3 years); however, IQ decreased with increasing phenylalanine concentration during pregnancy. Good metabolic control during pregnancy is the prerequisite to prevent maternal PKU syndrome in the offspring. This can be achieved by timely provision of detailed information, preconceptual dietary training, and careful planning of pregnancy.


Asunto(s)
Fenilcetonuria Materna , Fenilcetonurias , Embarazo , Niño , Femenino , Humanos , Estudios Retrospectivos , Fenilcetonuria Materna/terapia , Fenilalanina , Dieta , Conducta Infantil , Síndrome , Resultado del Embarazo
7.
Sci Rep ; 11(1): 19300, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588557

RESUMEN

The aim of the study was a systematic evaluation of cognitive development in individuals with glutaric aciduria type 1 (GA1), a rare neurometabolic disorder, identified by newborn screening in Germany. This national, prospective, observational, multi-centre study includes 107 individuals with confirmed GA1 identified by newborn screening between 1999 and 2020 in Germany. Clinical status, development, and IQ were assessed using standardized tests. Impact of interventional and non-interventional parameters on cognitive outcome was evaluated. The majority of tested individuals (n = 72) showed stable IQ values with age (n = 56 with IQ test; median test age 11 years) but a significantly lower performance (median [IQR] IQ 87 [78-98]) than in general population, particularly in individuals with a biochemical high excreter phenotype (84 [75-96]) compared to the low excreter group (98 [92-105]; p = 0.0164). For all patients, IQ results were homogenous on subscale levels. Sex, clinical motor phenotype and quality of metabolic treatment had no impact on cognitive functions. Long-term neurologic outcome in GA1 involves both motor and cognitive functions. The biochemical high excreter phenotype is the major risk factor for cognitive impairment while cognitive functions do not appear to be impacted by current therapy and striatal damage. These findings implicate the necessity of new treatment concepts.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Encefalopatías Metabólicas/complicaciones , Desarrollo Infantil , Disfunción Cognitiva/epidemiología , Glutaratos/orina , Glutaril-CoA Deshidrogenasa/deficiencia , Adolescente , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/orina , Encefalopatías Metabólicas/diagnóstico , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/orina , Niño , Preescolar , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Femenino , Estudios de Seguimiento , Alemania/epidemiología , Glutaratos/metabolismo , Glutaril-CoA Deshidrogenasa/metabolismo , Glutaril-CoA Deshidrogenasa/orina , Humanos , Lactante , Recién Nacido , Pruebas de Inteligencia/estadística & datos numéricos , Masculino , Tamizaje Neonatal/métodos , Estudios Prospectivos , Medición de Riesgo/métodos , Adulto Joven
8.
EMBO Mol Med ; 13(5): e13376, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33938619

RESUMEN

Lysosomal storage diseases, including mucopolysaccharidoses, result from genetic defects that impair lysosomal catabolism. Here, we describe two patients from two independent families presenting with progressive psychomotor regression, delayed myelination, brain atrophy, neutropenia, skeletal abnormalities, and mucopolysaccharidosis-like dysmorphic features. Both patients were homozygous for the same intronic variant in VPS16, a gene encoding a subunit of the HOPS and CORVET complexes. The variant impaired normal mRNA splicing and led to an ~85% reduction in VPS16 protein levels in patient-derived fibroblasts. Levels of other HOPS/CORVET subunits, including VPS33A, were similarly reduced, but restored upon re-expression of VPS16. Patient-derived fibroblasts showed defects in the uptake and endosomal trafficking of transferrin as well as accumulation of autophagosomes and lysosomal compartments. Re-expression of VPS16 rescued the cellular phenotypes. Zebrafish with disrupted vps16 expression showed impaired development, reduced myelination, and a similar accumulation of lysosomes and autophagosomes in the brain, particularly in glia cells. This disorder resembles previously reported patients with mutations in VPS33A, thus expanding the family of mucopolysaccharidosis-like diseases that result from mutations in HOPS/CORVET subunits.


Asunto(s)
Mucopolisacaridosis , Pez Cebra , Animales , Endosomas , Humanos , Lisosomas , Proteínas de Transporte Vesicular/genética
9.
Expert Rev Neurother ; 21(11): 1275-1282, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33538188

RESUMEN

INTRODUCTION: Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is a rare pediatric neurodegenerative condition, which is usually fatal by mid-adolescence. Seizures are one of the most common early symptoms of CLN2 disease, but patients often experience language deficits, movement disorders, and behavioral problems. Diagnosis of CLN2 disease is challenging (particularly when differentiating between early-onset developmental, metabolic, or epileptic syndromes), and diagnostic delays often overlap with rapid disease progression. An enzyme replacement therapy (cerliponase alfa) is now available, adding CLN2 disease to the list of potentially treatable disorders requiring a prompt diagnosis. AREAS COVERED: Although advances in enzymatic activity testing and genetic testing have facilitated diagnoses of CLN2 disease, our review highlights the presenting symptoms that are vital in directing clinicians to perform appropriate tests or seek expert opinion. We also describe common diagnostic challenges and some potential misdiagnoses that may occur during differential diagnosis. EXPERT OPINION: An awareness of CLN2 disease as a potentially treatable disorder and increased understanding of the key presenting symptoms can support selection of appropriate tests and prompt diagnosis. The available enzyme replacement therapy heralds an even greater imperative for early diagnosis, and for clinicians to direct patients to appropriate diagnostic pathways.


Asunto(s)
Epilepsia , Lipofuscinosis Ceroideas Neuronales , Niño , Preescolar , Progresión de la Enfermedad , Terapia de Reemplazo Enzimático , Epilepsia/diagnóstico , Epilepsia/terapia , Humanos , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/terapia , Tripeptidil Peptidasa 1
10.
J Inherit Metab Dis ; 44(1): 9-21, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32412122

RESUMEN

Organic acidurias (OADs) comprise a biochemically defined group of inherited metabolic diseases. Increasing awareness, reliable diagnostic work-up, newborn screening programs for some OADs, optimized neonatal and intensive care, and the development of evidence-based recommendations have improved neonatal survival and short-term outcome of affected individuals. However, chronic progression of organ dysfunction in an aging patient population cannot be reliably prevented with traditional therapeutic measures. Evidence is increasing that disease progression might be best explained by mitochondrial dysfunction. Previous studies have demonstrated that some toxic metabolites target mitochondrial proteins inducing synergistic bioenergetic impairment. Although these potentially reversible mechanisms help to understand the development of acute metabolic decompensations during catabolic state, they currently cannot completely explain disease progression with age. Recent studies identified unbalanced autophagy as a novel mechanism in the renal pathology of methylmalonic aciduria, resulting in impaired quality control of organelles, mitochondrial aging and, subsequently, progressive organ dysfunction. In addition, the discovery of post-translational short-chain lysine acylation of histones and mitochondrial enzymes helps to understand how intracellular key metabolites modulate gene expression and enzyme function. While acylation is considered an important mechanism for metabolic adaptation, the chronic accumulation of potential substrates of short-chain lysine acylation in inherited metabolic diseases might exert the opposite effect, in the long run. Recently, changed glutarylation patterns of mitochondrial proteins have been demonstrated in glutaric aciduria type 1. These new insights might bridge the gap between natural history and pathophysiology in OADs, and their exploitation for the development of targeted therapies seems promising.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encefalopatías Metabólicas Innatas/metabolismo , Encefalopatías Metabólicas Innatas/patología , Metabolismo Energético , Humanos , Recién Nacido , Ácido Metilmalónico/metabolismo , Tamizaje Neonatal
11.
J Inherit Metab Dis ; 44(3): 629-638, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33274439

RESUMEN

Glutaric aciduria type 1 (GA1) is a rare neurometabolic disorder, caused by inherited deficiency of glutaryl-CoA dehydrogenase, mostly affecting the brain. Early identification by newborn screening (NBS) significantly improves neurologic outcome. It has remained unclear whether recommended therapy, particular low lysine diet, is safe or negatively affects anthropometric long-term outcome. This national prospective, observational, multi-centre study included 79 patients identified by NBS and investigated effects of interventional and non-interventional parameters on body weight, body length, body mass index (BMI) and head circumference as well as neurological parameters. Adherence to recommended maintenance and emergency treatment (ET) had a positive impact on neurologic outcome and allowed normal anthropometric development until adulthood. In contrast, non-adherence to ET, resulting in increased risk of dystonia, had a negative impact on body weight (mean SDS -1.07; P = .023) and body length (mean SDS -1.34; P = -.016). Consistently, longitudinal analysis showed a negative influence of severe dystonia on weight and length development over time (P < .001). Macrocephaly was more often found in female (mean SDS 0.56) than in male patients (mean SDS -0.20; P = .049), and also in individuals with high excreter phenotype (mean SDS 0.44) compared to low excreter patients (mean SDS -0.68; P = .016). In GA1, recommended long-term treatment is effective and allows for normal anthropometric long-term development up to adolescence, with gender- and excreter type-specific variations. Delayed ET and severe movement disorder result in poor anthropometric outcome.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Encefalopatías Metabólicas/diagnóstico , Encefalopatías Metabólicas/terapia , Glutaril-CoA Deshidrogenasa/deficiencia , Adolescente , Antropometría , Estatura , Índice de Masa Corporal , Peso Corporal , Niño , Preescolar , Distonía/patología , Tratamiento de Urgencia , Femenino , Alemania , Humanos , Lactante , Recién Nacido , Masculino , Megalencefalia/patología , Tamizaje Neonatal , Estudios Prospectivos , Factores Sexuales , Adulto Joven
12.
JIMD Rep ; 55(1): 38-43, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32905087

RESUMEN

Mannose phosphate isomerase deficiency-congenital disorder of glycosylation (MPI-CDG; formerly named CDG type 1b) is characterized by the clinical triad of hepatopathy, protein-losing enteropathy, and hyperinsulinemic hypoglycemia in combination with coagulation disorder (thrombophilia, depletion of antithrombin, proteins C and S, factor XI). In the majority of patients, MPI-CDG manifests during early infancy or childhood. Here, we present a 15-year-old female patient with unremarkable medical history suffering from acute cerebral venous sinus thrombosis necessitating interventional thrombectomy and neurosurgical decompression. Diagnostic work-up of thrombophilia revealed deficiency of antithrombin (AT), proteins C and S, and factor XI. Detailed evaluation identified MPI-CDG as the underlying cause of disease. After initiation of mannose therapy, coagulation parameters normalized. The girl fully recovered without any neurologic sequelae, and remains free of further thrombotic events or any other clinical and laboratory abnormalities on follow-up 1 year after start of mannose treatment. In conclusion, we here present the significant case of MPI-CDG with a severe cerebral venous sinus thrombosis as the first and only symptom of the disease. In light of the high frequency of AT deficiency on one hand, and the excellent treatability of MPI-CDG on the other hand, CDG screening should be included as a routine analysis in all patients presenting with unexplained coagulation disorder, especially when comprising AT deficiency.

13.
Dtsch Arztebl Int ; 116(12): 197-204, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-31056085

RESUMEN

BACKGROUND: In developed countries, global developmental disorders are encounter- ed in approximately 1% of all children. The causes are manifold, and no exogenous cause can be identified in about half of the affected children. The parallel investi- gation of the coding sequences of all genes of the affected individual (whole exome sequencing, WES) has developed into a successful diagnostic method for identify- ing the cause of the problem. It is not yet clear, however, when WES should best be used in routine clinical practice in order to exploit the potential of this method to the fullest. METHODS: In an interdisciplinary study, we carried out standardized clinical pheno- typing and a systematic genetic analysis (WES of the index patient and his or her parents, so-called trio WES) in 50 children with developmental disturbances of unclear etiology and with nonspecific neurological manifestations. RESULTS: In 21 children (42% of the collective), we were able to identify the cause of the disorder by demonstrating a mutation in a gene known to be associated with disease. Three of these children subsequently underwent specific treatment. In 22 other children (44%), we detected possibly etiological changes in candidate genes not currently known to be associated with human disease. CONCLUSION: Our detection rate of at least 42% is high in comparison with the results obtained in other studies from Germany and other countries to date and implies that WES can be used to good effect as a differential diagnostic tool in pediatric neurol- ogy. WES should be carried out in both the index patient and his or her parents (trio- WES) and accompanied by close interdisciplinary collaboration of human geneti- cists and pediatricians, by comprehensive and targeted phenotyping (also after the diagnosis is established), and by the meticulous evaluation of all gene variants.


Asunto(s)
Secuenciación del Exoma , Niño , Alemania , Humanos
14.
Mol Genet Metab ; 126(4): 416-428, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30686684

RESUMEN

Glutaric Aciduria type I (GA-I) is caused by mutations in the GCDH gene. Its deficiency results in accumulation of the key metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in body tissues and fluids. Present knowledge on the neuropathogenesis of GA-I suggests that GA and 3-OHGA have toxic properties on the developing brain. We analyzed morphological and biochemical features of 3D brain cell aggregates issued from Gcdh-/- mice at two different developmental stages, day-in-vitro (DIV) 8 and 14, corresponding to the neonatal period and early childhood. We also induced a metabolic stress by exposing the aggregates to 10 mM l-lysine (Lys). Significant amounts of GA and 3-OHGA were detected in Gcdh-/- aggregates and their culture media. Ammonium was significantly increased in culture media of Gcdh-/- aggregates at the early developmental stage. Concentrations of GA, 3-OHGA and ammonium increased significantly after exposure to Lys. Gcdh-/- aggregates manifested morphological alterations of all brain cell types at DIV 8 while at DIV 14 they were only visible after exposure to Lys. Several chemokine levels were significantly decreased in culture media of Gcdh-/- aggregates at DIV 14 and after exposure to Lys at DIV 8. This new in vitro model for brain damage in GA-I mimics well in vivo conditions. As seen previously in WT aggregates exposed to 3-OHGA, we confirmed a significant ammonium production by immature Gcdh-/- brain cells. We described for the first time a decrease of chemokines in Gcdh-/- culture media which might contribute to brain cell injury in GA-I.


Asunto(s)
Compuestos de Amonio/análisis , Encéfalo/citología , Quimiocinas/análisis , Medios de Cultivo/análisis , Glutaril-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Compuestos de Amonio/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encefalopatías Metabólicas/genética , Técnicas de Cultivo de Célula , Quimiocinas/metabolismo , Medios de Cultivo/metabolismo , Glutaril-CoA Deshidrogenasa/deficiencia , Lisina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Andamios del Tejido
15.
Cell Rep ; 24(11): 2946-2956, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30208319

RESUMEN

Lysine glutarylation (Kglu) of mitochondrial proteins is associated with glutaryl-CoA dehydrogenase (GCDH) deficiency, which impairs lysine/tryptophan degradation and causes destruction of striatal neurons during catabolic crisis with subsequent movement disability. By investigating the role of Kglu modifications in this disease, we compared the brain and liver glutarylomes of Gcdh-deficient mice. In the brain, we identified 73 Kglu sites on 37 mitochondrial proteins involved in various metabolic degradation pathways. Ultrastructural immunogold studies indicated that glutarylated proteins are heterogeneously distributed in mitochondria, which are exclusively localized in glial cells. In liver cells, all mitochondria contain Kglu-modified proteins. Glutarylation reduces the catalytic activities of the most abundant glutamate dehydrogenase (GDH) and the brain-specific carbonic anhydrase 5b and interferes with GDH-protein interactions. We propose that Kglu contributes to the functional heterogeneity of mitochondria and may metabolically adapt glial cells to the activity and metabolic demands of neighboring GCDH-deficient neurons.


Asunto(s)
Encéfalo/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Acilcoenzima A/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Animales , Encéfalo/ultraestructura , Encefalopatías Metabólicas/metabolismo , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica , Mitocondrias/ultraestructura , Unión Proteica , Procesamiento Proteico-Postraduccional
16.
Ann Neurol ; 83(5): 970-979, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29665094

RESUMEN

OBJECTIVE: Untreated individuals with glutaric aciduria type 1 (GA1) commonly present with a complex, predominantly dystonic movement disorder (MD) following acute or insidious onset striatal damage. Implementation of GA1 into newborn screening (NBS) programs has improved the short-term outcome. It remains unclear, however, whether NBS changes the long-term outcome and which variables are predictive. METHODS: This prospective, observational, multicenter study includes 87 patients identified by NBS, 4 patients missed by NBS, and 3 women with GA1 identified by positive NBS results of their unaffected children. RESULTS: The study population comprises 98.3% of individuals with GA1 identified by NBS in Germany during 1999-2016. Overall, cumulative sensitivity of NBS is 95.6%, but it is lower (84%) for patients with low excreter phenotype. The neurologic outcome of patients missed by NBS is as poor as in the pre-NBS era, and the clinical phenotype of diagnosed patients depends on the quality of therapeutic interventions rather than noninterventional variables. Presymptomatic start of treatment according to current guideline recommendations clearly improves the neurologic outcome (MD: 7% of patients), whereas delayed emergency treatment results in acute onset MD (100%), and deviations from maintenance treatment increase the risk of insidious onset MD (50%). Independent of the neurologic phenotype, kidney function tends to decline with age, a nonneurologic manifestation not predicted by any variable included in this study. INTERPRETATION: NBS is a beneficial, disease-changing intervention for GA1. However, improved neurologic outcome critically depends on adherence to recommended therapy, whereas kidney dysfunction does not appear to be impacted by recommended therapy. Ann Neurol 2018;83:970-979.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/terapia , Encefalopatías Metabólicas/terapia , Diagnóstico Precoz , Glutaril-CoA Deshidrogenasa/deficiencia , Tamizaje Neonatal , Niño , Preescolar , Femenino , Alemania , Glutaril-CoA Deshidrogenasa/análisis , Humanos , Recién Nacido , Masculino , Tamizaje Neonatal/métodos , Fenotipo , Estudios Prospectivos
18.
JIMD Rep ; 39: 25-30, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28699143

RESUMEN

Glutaric aciduria type 1 (GA1) is caused by deficiency of the mitochondrial matrix enzyme glutaryl-CoA dehydrogenase (GCDH), leading to accumulation of glutaric acid (GA) and 3-hydroxyglutaric acid (3OHGA) in tissues and body fluids. During catabolic crises, GA1 patients are prone to the development of striatal necrosis and a subsequent irreversible movement disorder during a time window of vulnerability in early infancy. Thus, GA1 had been considered a pure "cerebral organic aciduria" in the past. Single case reports have indicated the occurrence of acute renal dysfunction in children affected by GA1. In addition, growing evidence arises that GA1 patients may develop chronic renal failure during adulthood independent of the previous occurrence of encephalopathic crises. The underlying mechanisms are yet unknown. Here we report on a 3-year-old GA1 patient who died following the development of acute renal failure most likely due to haemolytic uraemic syndrome associated with a pneumococcal infection. We hypothesise that known GA1 pathomechanisms, namely the endothelial dysfunction mediated by 3OHGA, as well as the transporter mechanisms for the urinary excretion of GA and 3OHGA, are involved in the development of glomerular and tubular dysfunction, respectively, and may contribute to a pre-disposition of GA1 patients to renal disease. We recommend careful differential monitoring of glomerular and tubular renal function in GA1 patients.

19.
JIMD Rep ; 37: 27-35, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28247338

RESUMEN

INTRODUCTION: This study is part of the "European network and registry for intoxication type metabolic diseases" (E-IMD) project. Intoxication-type inborn errors of metabolism (IT-IEM) such as urea cycle disorders (UCD) and organic acidurias (OA) have a major impact on patients' lives. Patients have to adhere to strict diet and medication and may suffer from metabolic crises and neurocognitive impairment. Disease-specific health-related quality of life (HrQoL) assessment questionnaires are the method of choice to estimate the subjective burden of a disease. To date, no such instrument is available for IT-IEM. METHODS: Disease-specific patient- and parent-reported HrQoL questions were constructed in German based on focus group interviews with patients and parents. Questionnaires for patients from 8 to 18 years were piloted with 14 participants (n = 9 children and adolescents, n = 5 parents) by cognitive debriefing and tested psychometrically with 80 participants (n = 38 patients, n = 42 parents) for item characteristics, validity, and reliability to construct the first version of a disease-specific HrQoL questionnaire. RESULTS: Twenty-eight questions were selected based on item descriptives. Scales of self- and proxy questionnaires demonstrated acceptable to excellent reliability in terms of internal consistency (Cronbach's α = 0.70-0.93). Scales and total scores correlated with those of generic HrQoL questionnaires, showing convergent validity. DISCUSSION: The MetabQoL 1.0 questionnaire exhibits sound psychometric properties and is a promising step towards assessing patient-reported outcomes in research and clinical practice. It provides a solid basis for translation into other languages and further elaboration and psychometric exploration in larger populations.

20.
Hum Mol Genet ; 26(3): 538-551, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062662

RESUMEN

The neurometabolic disorder glutaric aciduria type 1 (GA1) is caused by mutations in the GCDH gene encoding the mitochondrial matrix protein glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes. Twenty percent of all pathogenic mutations affect single amino acid residues on the surface of GCDH resulting in a severe clinical phenotype. We report here on heterologous expression studies of 18 missense mutations identified in GA1 patients affecting surface amino acids. Western blot and pulse chase experiments revealed that the stability of half of the GCDH mutants was significantly reduced. In silico analyses showed that none of the mutations impaired the 3D structure of GCDH. Immunofluorescence co-localisation studies in HeLa cells demonstrated that all GCDH mutants were correctly translocated into mitochondria. Surprisingly, the expression of p.Arg88Cys GCDH as well as further substitutions by alanine, lysine, or methionine but not histidine or leucine resulted in the disruption of mitochondrial architecture forming longitudinal structures composed of stacks of cristae and partial loss of the outer mitochondrial membrane. The expression of mitochondrial fusion or fission proteins was not affected in these cells. Bioluminescence resonance energy transfer analyses revealed that all GCDH mutants exhibit an increased binding affinity to electron transfer flavoprotein beta, whereas only p.Tyr155His GCDH showed a reduced interaction with dihydrolipoamide succinyl transferase. Our data underscore the impact of GCDH protein interactions mediated by amino acid residues on the surface of GCDH required for proper enzymatic activity.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/genética , Estabilidad de Enzimas/genética , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/genética , Mitocondrias/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Sustitución de Aminoácidos/genética , Encefalopatías Metabólicas/patología , Regulación Enzimológica de la Expresión Génica/genética , Glutaril-CoA Deshidrogenasa/química , Células HeLa , Humanos , Mitocondrias/patología , Dinámicas Mitocondriales/genética , Mutación Missense/genética , Conformación Proteica , Multimerización de Proteína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...