Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Front Toxicol ; 6: 1359507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742231

RESUMEN

In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with in vitro or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific in vivo studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.

2.
Mol Ecol ; 33(6): e17296, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361456

RESUMEN

Dietary restriction in the form of fasting is a putative key to a healthier and longer life, but these benefits may come at a trade-off with reproductive fitness and may affect the following generation(s). The potential inter- and transgenerational effects of long-term fasting and starvation are particularly poorly understood in vertebrates when they originate from the paternal line. We utilised the externally fertilising zebrafish amenable to a split-egg clutch design to explore the male-specific effects of fasting/starvation on fertility and fitness of offspring independently of maternal contribution. Eighteen days of fasting resulted in reduced fertility in exposed males. While average offspring survival was not affected, we detected increased larval growth rate in F1 offspring from starved males and more malformed embryos at 24 h post-fertilisation in F2 offspring produced by F1 offspring from starved males. Comparing the transcriptomes of F1 embryos sired by starved and fed fathers revealed robust and reproducible increased expression of muscle composition genes but lower expression of lipid metabolism and lysosome genes in embryos from starved fathers. A large proportion of these genes showed enrichment in the yolk syncytial layer suggesting gene regulatory responses associated with metabolism of nutrients through paternal effects on extra-embryonic tissues which are loaded with maternal factors. We compared the embryo transcriptomes to published adult transcriptome datasets and found comparable repressive effects of starvation on metabolism-associated genes. These similarities suggest a physiologically relevant, directed and potentially adaptive response transmitted by the father, independently from the offspring's nutritional state, which was defined by the mother.


Asunto(s)
Yema de Huevo , Embrión no Mamífero , Padre , Pez Cebra , Animales , Masculino , Humanos , Pez Cebra/genética , Regulación de la Expresión Génica , Expresión Génica
3.
bioRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076793

RESUMEN

The recognition of core promoter sequences by the general transcription factor TFIID is the first step in the process of RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is composed of the TATA binding protein (TBP) and of 13 TBP associated factors (TAFs). Inducible Taf7 knock out (KO) results in the formation of a Taf7-less TFIID complex, while Taf10 KO leads to serious defects within the TFIID assembly pathway. Either TAF7 or TAF10 depletions correlate with the detected TAF occupancy changes at promoters, and with the distinct phenotype severities observed in mouse embryonic stem cells or mouse embryos. Surprisingly however, under either Taf7 or Taf10 deletion conditions, TBP is still associated to the chromatin, and no major changes are observed in nascent Pol II transcription. Thus, partially assembled TFIID complexes can sustain Pol II transcription initiation, but cannot replace holo-TFIID over several cell divisions and/or development.

4.
Nat Struct Mol Biol ; 30(12): 1970-1984, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37996663

RESUMEN

Global changes in transcriptional regulation and RNA metabolism are crucial features of cancer development. However, little is known about the role of the core promoter in defining transcript identity and post-transcriptional fates, a potentially crucial layer of transcriptional regulation in cancer. In this study, we use CAGE-seq analysis to uncover widespread use of dual-initiation promoters in which non-canonical, first-base-cytosine (C) transcription initiation occurs alongside first-base-purine initiation across 59 human cancers and healthy tissues. C-initiation is often followed by a 5' terminal oligopyrimidine (5'TOP) sequence, dramatically increasing the range of genes potentially subjected to 5'TOP-associated post-transcriptional regulation. We show selective, dynamic switching between purine and C-initiation site usage, indicating transcription initiation-level regulation in cancers. We additionally detail global metabolic changes in C-initiation transcripts that mark differentiation status, proliferative capacity, radiosensitivity, and response to irradiation and to PI3K-Akt-mTOR and DNA damage pathway-targeted radiosensitization therapies in colorectal cancer organoids and cancer cell lines and tissues.


Asunto(s)
Fosfatidilinositol 3-Quinasas , ARN , Humanos , Sitio de Iniciación de la Transcripción , ARN/genética , Proliferación Celular , Purinas
5.
Dis Model Mech ; 16(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37529920

RESUMEN

In the past decades, the zebrafish has become a disease model with increasing popularity owing to its advantages that include fast development, easy genetic manipulation, simplicity for imaging, and sharing conserved disease-associated genes and pathways with those of human. In parallel, studies of disease mechanisms are increasingly focusing on non-coding mutations, which require genome annotation maps of regulatory elements, such as enhancers and promoters. In line with this, genomic resources for zebrafish research are expanding, producing a variety of genomic data that help in defining regulatory elements and their conservation between zebrafish and humans. Here, we discuss recent developments in generating functional annotation maps for regulatory elements of the zebrafish genome and how this can be applied to human diseases. We highlight community-driven developments, such as DANIO-CODE, in generating a centralised and standardised catalogue of zebrafish genomics data and functional annotations; consider the advantages and limitations of current annotation maps; and offer considerations for interpreting and integrating existing maps with comparative genomics tools. We also discuss the need for developing standardised genomics protocols and bioinformatic pipelines and provide suggestions for the development of analysis and visualisation tools that will integrate various multiomic bulk sequencing data together with fast-expanding data on single-cell methods, such as single-cell assay for transposase-accessible chromatin with sequencing. Such integration tools are essential to exploit the multiomic chromatin characterisation offered by bulk genomics together with the cell-type resolution offered by emerging single-cell methods. Together, these advances will build an expansive toolkit for interrogating the mechanisms of human disease in zebrafish.


Asunto(s)
Genómica , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Genómica/métodos , Genoma , Cromatina , Regeneración/genética
6.
Trends Biochem Sci ; 48(10): 839-848, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37574371

RESUMEN

Core promoters are sites where transcriptional regulatory inputs of a gene are integrated to direct the assembly of the preinitiation complex (PIC) and RNA polymerase II (Pol II) transcription output. Until now, core promoter functions have been investigated by distinct methods, including Pol II transcription initiation site mappings and structural characterization of PICs on distinct promoters. Here, we bring together these previously unconnected observations and hypothesize how, on metazoan TATA promoters, the precisely structured building up of transcription factor (TF) IID-based PICs results in sharp transcription start site (TSS) selection; or, in contrast, how the less strictly controlled positioning of the TATA-less promoter DNA relative to TFIID-core PIC components results in alternative broad TSS selections by Pol II.


Asunto(s)
Factor de Transcripción TFIID , Transcripción Genética , Animales , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , TATA Box , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo
7.
Dev Cell ; 58(2): 155-170.e8, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36693321

RESUMEN

In anamniote embryos, the major wave of zygotic genome activation starts during the mid-blastula transition. However, some genes escape global genome repression, are activated substantially earlier, and contribute to the minor wave of genome activation. The mechanisms underlying the minor wave of genome activation are little understood. We explored the genomic organization and cis-regulatory mechanisms of a transcription body, in which the minor wave of genome activation is first detected in zebrafish. We identified the miR-430 cluster as having excessive copy number and the highest density of Pol-II-transcribed promoters in the genome, and this is required for forming the transcription body. However, this transcription body is not essential for, nor does it encompasse, minor wave transcription globally. Instead, distinct minor-wave-specific promoter architecture suggests that promoter-autonomous mechanisms regulate the minor wave of genome activation. The minor-wave-specific features also suggest distinct transcription initiation mechanisms between the minor and major waves of genome activation.


Asunto(s)
MicroARNs , Transcripción Genética , Animales , Pez Cebra/genética , Cigoto , ARN Polimerasa II/genética , MicroARNs/genética , Regulación del Desarrollo de la Expresión Génica
8.
RNA ; 28(10): 1377-1390, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35970556

RESUMEN

Cap methyltransferases (CMTrs) O methylate the 2' position of the ribose (cOMe) of cap-adjacent nucleotides of animal, protist, and viral mRNAs. Animals generally have two CMTrs, whereas trypanosomes have three, and many viruses encode one in their genome. In the splice leader of mRNAs in trypanosomes, the first four nucleotides contain cOMe, but little is known about the status of cOMe in animals. Here, we show that cOMe is prominently present on the first two cap-adjacent nucleotides with species- and tissue-specific variations in Caenorhabditis elegans, honeybees, zebrafish, mouse, and human cell lines. In contrast, Drosophila contains cOMe primarily on the first cap-adjacent nucleotide. De novo RoseTTA modeling of CMTrs reveals close similarities of the overall structure and near identity for the catalytic tetrad, and for cap and cofactor binding for human, Drosophila and C. elegans CMTrs. Although viral CMTrs maintain the overall structure and catalytic tetrad, they have diverged in cap and cofactor binding. Consistent with the structural similarity, both CMTrs from Drosophila and humans methylate the first cap-adjacent nucleotide of an AGU consensus start. Because the second nucleotide is also methylated upon heat stress in Drosophila, these findings argue for regulated cOMe important for gene expression regulation.


Asunto(s)
Caperuzas de ARN , Ribosa , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila/genética , Drosophila/metabolismo , Humanos , Metilación , Metiltransferasas/metabolismo , Ratones , Nucleótidos/genética , Nucleótidos/metabolismo , Caperuzas de ARN/química , ARN Mensajero/genética , Ribosa/metabolismo , Pez Cebra/genética
9.
Sci Rep ; 11(1): 22717, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811400

RESUMEN

Retinoic acid (RA) is a key signal for the specification of the pancreas. Still, the gene regulatory cascade triggered by RA in the endoderm remains poorly characterized. In this study, we investigated this regulatory network in zebrafish by combining RNA-seq, RAR ChIP-seq and ATAC-seq assays. By analysing the effect of RA and of the RA receptor (RAR) inverse-agonist BMS493 on the transcriptome and on the chromatin accessibility of endodermal cells, we identified a large set of genes and regulatory regions regulated by RA signalling. RAR ChIP-seq further defined the direct RAR target genes in zebrafish, including hox genes as well as several pancreatic regulators like mnx1, insm1b, hnf1ba and gata6. Comparison of zebrafish and murine RAR ChIP-seq data highlighted the conserved direct target genes and revealed that some RAR sites are under strong evolutionary constraints. Among them, a novel highly conserved RAR-induced enhancer was identified downstream of the HoxB locus and driving expression in the nervous system and in the gut in a RA-dependent manner. Finally, ATAC-seq data unveiled the role of the RAR-direct targets Hnf1ba and Gata6 in opening chromatin at many regulatory loci upon RA treatment.


Asunto(s)
Genómica , Páncreas/efectos de los fármacos , Receptores de Ácido Retinoico/agonistas , Transcriptoma , Tretinoina/farmacología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 1-beta del Hepatocito/genética , Factor Nuclear 1-beta del Hepatocito/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Páncreas/embriología , Páncreas/metabolismo , RNA-Seq , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Dev Cell ; 56(5): 641-656.e5, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33651978

RESUMEN

In many animal models, primordial germ cell (PGC) development depends on maternally deposited germ plasm, which prevents somatic cell fate. Here, we show that PGCs respond to regulatory information from the germ plasm in two distinct phases using two distinct mechanisms in zebrafish. We demonstrate that PGCs commence zygotic genome activation together with the somatic blastocysts with no demonstrable differences in transcriptional and chromatin opening. Unexpectedly, both PGC and somatic blastocysts activate germ-cell-specific genes, which are only stabilized in PGCs by cytoplasmic germ plasm determinants. Disaggregated perinuclear relocalization of germ plasm during PGC migration is regulated by the germ plasm determinant Tdrd7 and is coupled to dramatic divergence between PGC and somatic transcriptomes. This transcriptional divergence relies on PGC-specific cis-regulatory elements characterized by promoter-proximal distribution. We show that Tdrd7-dependent reconfiguration of chromatin accessibility is required for elaboration of PGC fate but not for PGC migration.


Asunto(s)
Diferenciación Celular , Cromatina/genética , Células Germinativas/citología , Ribonucleoproteínas/metabolismo , Transcriptoma , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Movimiento Celular , Cromatina/química , Epigénesis Genética , Genoma , Células Germinativas/metabolismo , Ribonucleoproteínas/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
11.
Nucleic Acids Res ; 49(4): 2126-2140, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33638993

RESUMEN

New genetic tools and strategies are currently under development to facilitate functional genomics analyses. Here, we describe an active member of the Tc1/mariner transposon superfamily, named ZB, which invaded the zebrafish genome very recently. ZB exhibits high activity in vertebrate cells, in the range of those of the widely used transposons piggyBac (PB), Sleeping Beauty (SB) and Tol2. ZB has a similar structural organization and target site sequence preference to SB, but a different integration profile with respect to genome-wide preference among mammalian functional annotation features. Namely, ZB displays a preference for integration into transcriptional regulatory regions of genes. Accordingly, we demonstrate the utility of ZB for enhancer trapping in zebrafish embryos and in the mouse germline. These results indicate that ZB may be a powerful tool for genetic manipulation in vertebrate model species.


Asunto(s)
Elementos Transponibles de ADN , Pez Cebra/genética , Animales , Elementos de Facilitación Genéticos , Células HeLa , Células Hep G2 , Humanos , Ratones , Mutagénesis , Pez Cebra/embriología
12.
Methods Mol Biol ; 2218: 185-194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606232

RESUMEN

Here, we describe a fast and straightforward methodology to in vivo detect transcriptional activity in the early zebrafish germ line. We report how fluorescently labeled morpholinos, targeted to nascent early transcripts, can be used to track the onset of transcriptional events during early embryogenesis. This method could be applied to any tagged cell line in a developing early zebrafish embryo as long as the gene of interest is expressed at high enough level for morpholino detection and is expressed at the first and main wave of genome activation, for which the protocol has been verified. The protocol, in combination with genetic manipulation, allows studies of mechanisms driving zygotic genome activation (ZGA) in individual cells. The reported procedures apply to a broad range of purposes for zebrafish embryo manipulation in view of imaging nuclear molecules in specific cell types.


Asunto(s)
Células Germinativas/fisiología , Transcripción Genética/fisiología , Pez Cebra/fisiología , Animales , Embrión no Mamífero/metabolismo , Embrión no Mamífero/fisiología , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Genoma/genética , Genoma/fisiología , Células Germinativas/metabolismo , Masculino , Morfolinos/metabolismo , Transcripción Genética/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Cigoto/metabolismo , Cigoto/fisiología
13.
Nat Commun ; 11(1): 6439, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33353944

RESUMEN

During oocyte growth, transcription is required to create RNA and protein reserves to achieve maternal competence. During this period, the general transcription factor TATA binding protein (TBP) is replaced by its paralogue, TBPL2 (TBP2 or TRF3), which is essential for RNA polymerase II transcription. We show that in oocytes TBPL2 does not assemble into a canonical TFIID complex. Our transcript analyses demonstrate that TBPL2 mediates transcription of oocyte-expressed genes, including mRNA survey genes, as well as specific endogenous retroviral elements. Transcription start site (TSS) mapping indicates that TBPL2 has a strong preference for TATA-like motif in core promoters driving sharp TSS selection, in contrast with canonical TBP/TFIID-driven TATA-less promoters that have broader TSS architecture. Thus, we show a role for the TBPL2/TFIIA complex in the establishment of the oocyte transcriptome by using a specific TSS recognition code.


Asunto(s)
Proteínas Nucleares/metabolismo , Oocitos/metabolismo , Regiones Promotoras Genéticas , Factor de Transcripción TFIIA/metabolismo , Transcriptoma/genética , Animales , Animales Recién Nacidos , Femenino , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Células 3T3 NIH , ARN Mensajero/genética , ARN Mensajero/metabolismo , TATA Box , Secuencias Repetidas Terminales/genética , Factor de Transcripción TFIID/metabolismo , Transcripción Genética
14.
Nucleic Acids Res ; 48(15): 8374-8392, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32619237

RESUMEN

The core-promoter, a stretch of DNA surrounding the transcription start site (TSS), is a major integration-point for regulatory-signals controlling gene-transcription. Cellular differentiation is marked by divergence in transcriptional repertoire and cell-cycling behaviour between cells of different fates. The role promoter-associated gene-regulatory-networks play in development-associated transitions in cell-cycle-dynamics is poorly understood. This study demonstrates in a vertebrate embryo, how core-promoter variations define transcriptional output in cells transitioning from a proliferative to cell-lineage specifying phenotype. Assessment of cell proliferation across zebrafish embryo segmentation, using the FUCCI transgenic cell-cycle-phase marker, revealed a spatial and lineage-specific separation in cell-cycling behaviour. To investigate the role differential promoter usage plays in this process, cap-analysis-of-gene-expression (CAGE) was performed on cells segregated by cycling dynamics. This analysis revealed a dramatic increase in tissue-specific gene expression, concurrent with slowed cycling behaviour. We revealed a distinct sharpening in TSS utilization in genes upregulated in slowly cycling, differentiating tissues, associated with enhanced utilization of the TATA-box, in addition to Sp1 binding-sites. In contrast, genes upregulated in rapidly cycling cells carry broad distribution of TSS utilization, coupled with enrichment for the CCAAT-box. These promoter features appear to correspond to cell-cycle-dynamic rather than tissue/cell-lineage origin. Moreover, we observed genes with cell-cycle-dynamic-associated transitioning in TSS distribution and differential utilization of alternative promoters. These results demonstrate the regulatory role of core-promoters in cell-cycle-dependent transcription regulation, during embryo-development.


Asunto(s)
Redes Reguladoras de Genes/genética , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética , Animales , Sitios de Unión/genética , Ciclo Celular/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Desarrollo Embrionario/genética , Humanos , Morfogénesis/genética , Factor de Transcripción Sp1/genética , TATA Box/genética , Pez Cebra/genética
15.
iScience ; 23(4): 101008, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32268280

RESUMEN

HOTAIR was proposed to regulate either HoxD cluster genes in trans or HoxC cluster genes in cis, a mechanism that remains unclear. We have identified a 32-nucleotide conserved noncoding element (CNE) as HOTAIR ancient sequence that likely originated at the root of vertebrate. The second round of whole-genome duplication resulted in one copy of the CNE within HOTAIR and another copy embedded in noncoding transcript of HOXD11. Paralogous CNEs underwent compensatory mutations, exhibit sequence complementarity with respect to transcripts directionality, and have high affinity in vitro. The HOTAIR CNE resembled a poised enhancer in stem cells and an active enhancer in HOTAIR-expressing cells. HOTAIR expression is positively correlated with HOXC11 in cis and negatively correlated with HOXD11 in trans. We propose a dual modality of HOTAIR regulation where transcription of HOTAIR and its embedded enhancer regulates HOXC11 in cis and sequence complementarity between paralogous CNEs suggests HOXD11 regulation in trans.

16.
Nat Commun ; 11(1): 168, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924754

RESUMEN

Variations in transcription start site (TSS) selection reflect diversity of preinitiation complexes and can impact on post-transcriptional RNA fates. Most metazoan polymerase II-transcribed genes carry canonical initiation with pyrimidine/purine (YR) dinucleotide, while translation machinery-associated genes carry polypyrimidine initiator (5'-TOP or TCT). By addressing the developmental regulation of TSS selection in zebrafish we uncovered a class of dual-initiation promoters in thousands of genes, including snoRNA host genes. 5'-TOP/TCT initiation is intertwined with canonical initiation and used divergently in hundreds of dual-initiation promoters during maternal to zygotic transition. Dual-initiation in snoRNA host genes selectively generates host and snoRNA with often different spatio-temporal expression. Dual-initiation promoters are pervasive in human and fruit fly, reflecting evolutionary conservation. We propose that dual-initiation on shared promoters represents a composite promoter architecture, which can function both coordinately and divergently to diversify RNAs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética , Animales , Secuencia de Bases , Drosophila/genética , Drosophila/crecimiento & desarrollo , Humanos , ARN/genética , ARN/fisiología , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/fisiología , ARN no Traducido/genética , ARN no Traducido/fisiología , Elementos Reguladores de la Transcripción , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Cigoto
17.
Nat Commun ; 10(1): 691, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741925

RESUMEN

Most metazoan embryos commence development with rapid, transcriptionally silent cell divisions, with genome activation delayed until the mid-blastula transition (MBT). However, a set of genes escapes global repression and gets activated before MBT. Here we describe the formation and the spatio-temporal dynamics of a pair of distinct transcription compartments, which encompasses the earliest gene expression in zebrafish. 4D imaging of pri-miR430 and zinc-finger-gene activities by a novel, native transcription imaging approach reveals transcriptional sharing of nuclear compartments, which are regulated by homologous chromosome organisation. These compartments carry the majority of nascent-RNAs and active Polymerase II, are chromatin-depleted and represent the main sites of detectable transcription before MBT. Transcription occurs during the S-phase of increasingly permissive cleavage cycles. It is proposed, that the transcription compartment is part of the regulatory architecture of embryonic nuclei and offers a transcriptionally competent environment to facilitate early escape from repression before global genome activation.


Asunto(s)
Ciclo Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genoma/genética , Transcripción Genética/genética , Animales , Blastocisto/fisiología , Blástula/diagnóstico por imagen , Blástula/fisiología , Ciclo Celular/fisiología , División Celular , Núcleo Celular/fisiología , Cromatina , Cromosomas , Tomografía Computarizada Cuatridimensional , Regulación del Desarrollo de la Expresión Génica/fisiología , Genoma/fisiología , MicroARNs , Modelos Animales , Fase S/fisiología , Análisis Espacio-Temporal , Transcripción Genética/fisiología , Transcriptoma/genética , Pez Cebra/genética , Cigoto/fisiología
18.
Nat Neurosci ; 22(1): 144-147, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30482917

RESUMEN

In the version of this article initially published, the legends for Supplementary Figs. 4-8 and 10-14 contained errors. The Supplementary Figure legends have been corrected in the HTML and PDF versions of the article.

19.
Genome Res ; 28(12): 1943-1956, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30404778

RESUMEN

Cap analysis of gene expression (CAGE) is a methodology for genome-wide quantitative mapping of mRNA 5' ends to precisely capture transcription start sites at a single nucleotide resolution. In combination with high-throughput sequencing, CAGE has revolutionized our understanding of the rules of transcription initiation, led to discovery of new core promoter sequence features, and discovered transcription initiation at enhancers genome-wide. The biggest limitation of CAGE is that even the most recently improved version (nAnT-iCAGE) still requires large amounts of total cellular RNA (5 µg), preventing its application to scarce biological samples such as those from early embryonic development or rare cell types. Here, we present SLIC-CAGE, a Super-Low Input Carrier-CAGE approach to capture 5' ends of RNA polymerase II transcripts from as little as 5-10 ng of total RNA. This dramatic increase in sensitivity is achieved by specially designed, selectively degradable carrier RNA. We demonstrate the ability of SLIC-CAGE to generate data for genome-wide promoterome with 1000-fold less material than required by existing CAGE methods, by generating a complex, high-quality library from mouse embryonic day 11.5 primordial germ cells.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Sitio de Iniciación de la Transcripción , Animales , Biblioteca de Genes , Ratones , Regiones Promotoras Genéticas
20.
EBioMedicine ; 36: 376-389, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30266295

RESUMEN

Background: Deficient glucocorticoid biosynthesis leading to adrenal insufficiency is life-threatening and is associated with significant co-morbidities. The affected pathways underlying the pathophysiology of co-morbidities due to glucocorticoid deficiency remain poorly understood and require further investigation. Methods: To explore the pathophysiological processes related to glucocorticoid deficiency, we have performed global transcriptional, post-transcriptional and metabolic profiling of a cortisol-deficient zebrafish mutant with a disrupted ferredoxin (fdx1b) system. Findings: fdx1b−/− mutants show pervasive reprogramming of metabolism, in particular of glutamine-dependent pathways such as glutathione metabolism, and exhibit changes of oxidative stress markers. The glucocorticoid-dependent post-transcriptional regulation of key enzymes involved in de novo purine synthesis was also affected in this mutant. Moreover, fdx1b−/− mutants exhibit crucial features of primary adrenal insufficiency, and mirror metabolic changes detected in primary adrenal insufficiency patients. Interpretation: Our study provides a detailed map of metabolic changes induced by glucocorticoid deficiency as a consequence of a disrupted ferredoxin system in an animal model of adrenal insufficiency. This improved pathophysiological understanding of global glucocorticoid deficiency informs on more targeted translational studies in humans suffering from conditions associated with glucocorticoid deficiency. Fund: Marie Curie Intra-European Fellowships for Career Development, HGF-programme BIFTM, Deutsche Forschungsgemeinschaft, BBSRC.


Asunto(s)
Insuficiencia Suprarrenal/metabolismo , Glutamina/metabolismo , Redes y Vías Metabólicas , Animales , Animales Modificados Genéticamente , Glucocorticoides/biosíntesis , Humanos , Metabolómica , Pez Cebra/genética , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA