Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Exp Hematol Oncol ; 13(1): 51, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745250

RESUMEN

BACKGROUND: CAR NK cells as vehicles for engineered "off-the-shelf" cellular cancer immunotherapy have attracted significant interest. Nonetheless, a comprehensive comparative assessment of the anticancer activity of CAR T cells and CAR NK cells carrying approved benchmark anti-CD19 CAR constructs is missing. Here, we report a direct head-to-head comparison of CD19-directed human T and NK cells. METHODS: We generated CAR T and CAR NK cells derived from healthy donor PBMC by retroviral transduction with the same benchmark second-generation anti-CD19 CAR construct, FMC63.28z. We investigated IFN-γ secretion and direct cytotoxicity in vitro against various CD19+ cancer cell lines as well as in autologous versus allogeneic settings. Furthermore, we have assessed anticancer activity of CAR T and CAR NK cells in vivo using a xenograft lymphoma model in an autologous versus allogeneic setting and a leukemia model. RESULTS: Our main findings are a drastically reduced capacity for CAR-mediated IFN-γ production and lower CAR-mediated cytotoxicity of CAR NK cells relative to CAR T cells in vitro. Consistent with these in vitro findings, we report superior anticancer activity of autologous CAR T cells compared with allogeneic CAR NK cells in vivo. CONCLUSIONS: CAR T cells had significantly higher CAR-mediated effector functions than CAR NK cells in vitro against several cancer cell lines and autologous CAR T cells outperformed allogeneic CAR NK cells both in vitro and in vivo. CAR NK cells will likely benefit from further engineering to enhance anticancer activity to ultimately fulfill the promise of an effective off-the-shelf product.

2.
J Neuroimmunol ; 390: 578343, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615370

RESUMEN

Since the 1980s it is known that immune responses to the Epstein-Barr virus (EBV) are elevated in multiple sclerosis (MS) patients. Recent seroepidemiologial data have shown that this alteration after primary EBV infection identifies individuals with a more than 30-fold increased risk to develop MS. The mechanisms by which EBV infection might erode tolerance for the central nervous system (CNS) in these individuals, years prior to clinical MS onset, remain unclear. In this review I will discuss altered frequencies of EBV life cycle stages and their tissue distribution, EBV with CNS autoantigen cross-reactive immune responses and loss of immune control for autoreactive B and T cells as possible mechanisms. This discussion is intended to stimulate future studies into these mechanisms with the aim to identify candidates for interventions that might correct EBV specific immune control and/or resulting cross-reactivities with CNS autoantigens in MS patients and thereby ameliorate disease activity.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/virología , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4/inmunología , Animales , Autoantígenos/inmunología
3.
PLoS Biol ; 22(3): e3002548, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38452120

RESUMEN

Proteasomes and autophagy constitute the 2 main proteolytic machineries for cytoplasmic content. A new study in PLOS Biology now demonstrates that autophagy stimulation alters proteasome composition, degrading hyperactive immunoproteasomes and thereby limiting inflammation.


Asunto(s)
Inflamación , Complejo de la Endopetidasa Proteasomal , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Macrófagos/metabolismo , Autofagia
4.
Semin Arthritis Rheum ; 64S: 152320, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38007361

RESUMEN

Recent evidence suggests that infection with the Epstein Barr virus (EBV) initiates a prodromal phase of multiple sclerosis (MS) in individuals with genetic and environmental predispositions for this autoimmune disease. In the context of the main genetic risk factor, the major histocompatibility complex (MHC) class II molecule HLA-DRB1*1501, EBV infection is less well controlled in a preclinical mouse model. CD4+ T cells that are primed during EBV infection and recognize EBV transformed B cells in an HLA-DRB1*1501 restricted fashion, cross-react more frequently with myelin autoantigens that are thought to mediate MS. While EBV emerges as an important, possibly essential trigger of MS, more mechanistic insights into this connection are required to understand if targeting of EBV infection itself or of cross-reactive immune responses that recognize both viral and autoantigens might prevent or even allow to treat MS.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Animales , Ratones , Humanos , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4/genética , Cadenas HLA-DRB1/genética , Linfocitos T , Autoantígenos
5.
Cancers (Basel) ; 15(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38136285

RESUMEN

The oncogenic and persistent Epstein Barr virus (EBV) is carried by more than 95% of the human adult population. While asymptomatic in most of these, EBV can cause a wide variety of malignancies of lymphoid or epithelial cell origin. Some of these are also associated with co-infections that either increase EBV-induced tumorigenesis or weaken its immune control. The respective pathogens include Kaposi-sarcoma-associated herpesvirus (KSHV), Plasmodium falciparum and human immunodeficiency virus (HIV). In this review, I will discuss the respective tumor entities and possible mechanisms by which co-infections increase the EBV-associated cancer burden. A better understanding of the underlying mechanisms could allow us to identify crucial features of EBV-associated malignancies and defects in their immune control. These could then be explored to develop therapies against the respective cancers by targeting EBV and/or the respective co-infections with pathogen-specific therapies or vaccinations.

6.
Proc Natl Acad Sci U S A ; 120(34): e2211281120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579175

RESUMEN

Autophagy serves as a defense mechanism against intracellular pathogens, but several microorganisms exploit it for their own benefit. Accordingly, certain herpesviruses include autophagic membranes into their infectious virus particles. In this study, we analyzed the composition of purified virions of the Epstein-Barr virus (EBV), a common oncogenic γ-herpesvirus. In these, we found several components of the autophagy machinery, including membrane-associated LC3B-II, and numerous viral proteins, such as the capsid assembly proteins BVRF2 and BdRF1. Additionally, we showed that BVRF2 and BdRF1 interact with LC3B-II via their common protein domain. Using an EBV mutant, we identified BVRF2 as essential to assemble mature capsids and produce infectious EBV. However, BdRF1 was sufficient for the release of noninfectious viral envelopes as long as autophagy was not compromised. These data suggest that BVRF2 and BdRF1 are not only important for capsid assembly but together with the LC3B conjugation complex of ATG5-ATG12-ATG15L1 are also critical for EBV envelope release.


Asunto(s)
Cápside , Infecciones por Virus de Epstein-Barr , Humanos , Cápside/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Envoltura Viral/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo
7.
Methods Mol Biol ; 2692: 311-336, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37365477

RESUMEN

Canonical autophagy and the non-canonical autophagy pathway LC3-associated phagocytosis (LAP) play crucial roles in the immune system by processing antigens for major histocompatibility complex (MHC) class II restricted presentation to CD4+ T cells. Recent studies offer insight into the relationship between LAP, autophagy, and antigen processing in macrophages and dendritic cells; however their involvement during antigen processing in B cells is less well understood.In this chapter, we describe how to monitor, manipulate, and understand the role of LAP and classical autophagy during MHC-restricted antigen presentation by human monocyte-derived macrophages as well as in B cell lymphoblastoid cell lines (LCLs). It includes an explanation on how to generate LCLs and monocyte-derived macrophages from primary human cells. Then we describe two different approaches to manipulate the autophagy pathways: silencing of the atg4b gene using CRISPR/Cas9 technology and a lentivirus delivery system for specific ATG4B overexpression. We also propose a method for triggering LAP and measuring different ATG proteins using Western blot and immunofluorescence. Finally, we show an approach to investigate MHC class II antigen presentation by an in vitro co-culture assay that uses the measurement of secreted cytokines, released by activated CD4+ T cells, as readout.


Asunto(s)
Presentación de Antígeno , Fagocitosis , Humanos , Macrófagos/metabolismo , Autofagia/genética , Antígenos de Histocompatibilidad Clase II/metabolismo
8.
Sci Rep ; 13(1): 10555, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386090

RESUMEN

Human natural killer (NK) cells are cytotoxic effector cells that are increasingly harnessed in cancer immunotherapy. NKG2A/CD94 is an inhibitory receptor on NK cells that has established regulatory functions in the direct interaction with target cells when engaged with its ligand, the non-classical HLA class I molecule HLA-E. Here, we confirmed NKG2A as a checkpoint molecule in primary human NK cells and identified a novel role for NKG2A in maintaining NK cell expansion capacity by dampening both proliferative activity and excessive activation-induced cell death. Maintenance of NK cell expansion capacity might contribute to the preferential accumulation of human NKG2A+ NK cells after hematopoietic cell transplantation and enrichment of functionally impaired NK cells in human cancers. Functional silencing of NKG2A for cancer immunotherapy is highly attractive but will need to consider that this might also lead to a reduced survival by driving activation-induced cell death in targeted NK cells.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Asesinas Naturales , Humanos , Ciclo Celular , Proliferación Celular , Eritrocitos Anormales
9.
Int J Infect Dis ; 133: 18-26, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37149211

RESUMEN

OBJECTIVES: The correlate(s) of protection against SARS-CoV-2 remain incompletely defined. Additional information regarding the combinations of antibody and T cell-mediated immunity which can protect against (re)infection is needed. METHODS: We conducted a population-based, longitudinal cohort study including 1044 individuals of varying SARS-CoV-2 vaccination and infection statuses. We assessed spike (S)- and nucleocapsid (N)-immunoglobulin(Ig)G and wildtype, Delta, and Omicron-neutralizing antibody (N-Ab) activity. In a subset of 328 individuals, we evaluated S, membrane (M), and N-specific T cells. Three months later, we reassessed Ab (n = 964) and T cell (n = 141) responses and evaluated factors associated with protection from (re)infection. RESULTS: At the study start, >98% of participants were S-IgG seropositive. N-IgG and M/N-T-cell responses increased over time, indicating viral (re)exposure, despite existing S-IgG. Compared to N-IgG, M/N-T cells were a more sensitive measure of viral exposure. High N-IgG titers, Omicron-N-Ab activity, and S-specific-T-cell responses were all associated with a reduced likelihood of (re)infection over time. CONCLUSION: Population-level SARS-CoV-2 immunity is S-IgG-dominated, but heterogeneous. M/N-T-cell responses can distinguish previous infection from vaccination, and monitoring a combination of N-IgG, Omicron-N-Ab, and S-T-cell responses may help estimate protection against SARS-CoV-2 (re)infection.


Asunto(s)
COVID-19 , Linfocitos T , Humanos , Anticuerpos Neutralizantes , Suiza/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios Longitudinales , SARS-CoV-2 , Inmunidad Celular , Reinfección , Inmunoglobulina G , Anticuerpos Antivirales
10.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047683

RESUMEN

The seroprevalence of Kaposi sarcoma-associated herpesvirus (KSHV) and the incidence of endemic Kaposi sarcoma (KS) overlap with regions of malaria endemicity in sub-Saharan Africa. Multiple studies have shown an increased risk of KSHV seroconversion in children from high malaria compared to low malaria regions; however, the impact of acute episodes of Plasmodium falciparum (P. falciparum) malaria on KSHV's biphasic life cycle and lytic reactivation has not been determined. Here, we examined KSHV serological profiles and viral loads in 134 children with acute malaria and 221 healthy children from high malaria regions in Kisumu, as well as 77 healthy children from low malaria regions in Nandi. We assayed KSHV, Epstein-Barr virus (EBV), and P. falciparum malaria antibody responses in these three by multiplexed Luminex assay. We confirmed that KSHV seroprevalence was significantly associated with malaria endemicity (OR = 1.95, 1.18-3.24 95% CI, p = 0.01) with 71-77% seropositivity in high-malaria (Kisumu) compared to 28% in low-malaria (Nandi) regions. Furthermore, KSHV serological profiles during acute malaria episodes were distinct from age-matched non-malaria-infected children from the same region. Paired IgG levels also varied after malaria treatment, with significantly higher anti-ORF59 at day 0 but elevated ORF38, ORF73, and K8.1 at day 3. Acute malaria episodes is characterized by perturbation of KSHV latency in seropositive children, providing further evidence that malaria endemicity contributes to the observed increase in endemic KS incidence in sub-Saharan Africa.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 8 , Malaria Falciparum , Sarcoma de Kaposi , Niño , Humanos , Estudios Seroepidemiológicos , Herpesvirus Humano 4 , Malaria Falciparum/epidemiología
11.
Mol Ther Methods Clin Dev ; 29: 120-132, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37007608

RESUMEN

Clinical success in T cell therapy has stimulated widespread efforts to increase safety and potency and to extend this technology to solid tumors. Yet progress in cell therapy remains restricted by the limited payload capacity, specificity of target cell transduction, and transgenic gene expression efficiency of applied viral vectors. This renders complex reprogramming or direct in vivo applications difficult. Here, we developed a synergistic combination of trimeric adapter constructs enabling T cell-directed transduction by the human adenoviral vector serotype C5 in vitro and in vivo. Rationally chosen binding partners showed receptor-specific transduction of otherwise non-susceptible human T cells by exploiting activation stimuli. This platform remains compatible with high-capacity vectors for up to 37 kb DNA delivery, increasing payload capacity and safety because of the removal of all viral genes. Together, these findings provide a tool for targeted delivery of large payloads in T cells as a potential avenue to overcome current limitations of T cell therapy.

12.
Nat Immunol ; 24(6): 941-954, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37095378

RESUMEN

The range of vaccines developed against severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) provides a unique opportunity to study immunization across different platforms. In a single-center cohort, we analyzed the humoral and cellular immune compartments following five coronavirus disease 2019 (COVID-19) vaccines spanning three technologies (adenoviral, mRNA and inactivated virus) administered in 16 combinations. For adenoviral and inactivated-virus vaccines, heterologous combinations were generally more immunogenic compared to homologous regimens. The mRNA vaccine as the second dose resulted in the strongest antibody response and induced the highest frequency of spike-binding memory B cells irrespective of the priming vaccine. Priming with the inactivated-virus vaccine increased the SARS-CoV-2-specific T cell response, whereas boosting did not. Distinct immune signatures were elicited by the different vaccine combinations, demonstrating that the immune response is shaped by the type of vaccines applied and the order in which they are delivered. These data provide a framework for improving future vaccine strategies against pathogens and cancer.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Anticuerpos Antivirales , COVID-19/prevención & control , SARS-CoV-2 , Linfocitos T , Inmunogenicidad Vacunal
13.
Eur J Immunol ; 53(7): e2250313, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37118896

RESUMEN

Humanized mouse models have been developed to study cell-mediated immune responses to human pathogens in vivo. How immunocompetent human T cells are selected in a murine thymus in such humanized mice remains poorly explored. To gain insights into this mechanism, we investigated the differentiation of human immune compartments in mouse MHC class II-deficient immune-compromised mice (humanized Ab0 mice). We observed a strong reduction in human CD4+ T-cell development but despite this reduction Ab0 mice had no disadvantage during Epstein-Barr virus (EBV) infection. Viral loads were equally well controlled in humanized Ab0 mice compared to humanized NSG mice, and improved T-cell recognition of autologous EBV-transformed B cells was observed, especially with respect to cytotoxicity. MHC class II blocking experiments with CD4+ T cells from humanized Ab0 mice demonstrated MHC class II restriction of lymphoblastoid cell line recognition. These findings suggest that a small number of CD4+ T cells in humanized mice can be solely selected on human MHC class II molecules, presumably expressed by reconstituted human immune cells, leading to improved effector functions.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Humanos , Animales , Ratones , Herpesvirus Humano 4 , Linfocitos T , Linfocitos T CD4-Positivos , Diferenciación Celular , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo
14.
Nat Cancer ; 4(3): 317-329, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36894637

RESUMEN

Cancer immunology and immunotherapy are driving forces of research and development in oncology, mostly focusing on CD8+ T cells and the tumor microenvironment. Recent progress highlights the importance of CD4+ T cells, corresponding to the long-known fact that CD4+ T cells are central players and coordinators of innate and antigen-specific immune responses. Moreover, they have now been recognized as anti-tumor effector cells in their own right. Here we review the current status of CD4+ T cells in cancer, which hold great promise for improving knowledge and therapies in cancer.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Neoplasias/terapia , Inmunoterapia , Linfocitos T CD4-Positivos , Microambiente Tumoral
15.
Life Sci Alliance ; 6(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36878637

RESUMEN

Endemic Burkitt lymphoma (BL) is a childhood cancer in sub-Saharan Africa characterized by Epstein-Barr virus and malaria-associated aberrant B-cell activation and MYC chromosomal translocation. Survival rates hover at 50% after conventional chemotherapies; therefore, clinically relevant models are necessary to test additional therapies. Hence, we established five patient-derived BL tumor cell lines and corresponding NSG-BL avatar mouse models. Transcriptomics confirmed that our BL lines maintained fidelity from patient tumors to NSG-BL tumors. However, we found significant variation in tumor growth and survival among NSG-BL avatars and in Epstein-Barr virus protein expression patterns. We tested rituximab responsiveness and found one NSG-BL model exhibiting direct sensitivity, characterized by apoptotic gene expression counterbalanced by unfolded protein response and mTOR pro-survival pathways. In rituximab-unresponsive tumors, we observed an IFN-α signature confirmed by the expression of IRF7 and ISG15. Our results demonstrate significant inter-patient tumor variation and heterogeneity, and that contemporary patient-derived BL cell lines and NSG-BL avatars are feasible tools to guide new therapeutic strategies and improve outcomes for these children.


Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Animales , Ratones , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Rituximab/farmacología , Rituximab/uso terapéutico , Herpesvirus Humano 4/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad
16.
Nat Rev Neurol ; 19(3): 160-171, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36759741

RESUMEN

Epidemiological studies have provided compelling evidence that multiple sclerosis (MS) is a rare complication of infection with the Epstein-Barr virus (EBV), a herpesvirus that infects more than 90% of the global population. This link was long suspected because the risk of MS increases markedly after infectious mononucleosis (symptomatic primary EBV infection) and with high titres of antibodies to specific EBV antigens. However, it was not until 2022 that a longitudinal study demonstrated that MS risk is minimal in individuals who are not infected with EBV and that it increases over 30-fold following EBV infection. Over the past few years, a number of studies have provided clues on the underlying mechanisms, which might help us to develop more targeted treatments for MS. In this Review, we discuss the evidence linking EBV to the development of MS and the mechanisms by which the virus is thought to cause the disease. Furthermore, we discuss implications for the treatment and prevention of MS, including the use of antivirals and vaccines.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Humanos , Herpesvirus Humano 4 , Infecciones por Virus de Epstein-Barr/complicaciones , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/etiología , Estudios Longitudinales , Anticuerpos Antivirales
17.
Sci Adv ; 9(2): eadc8825, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36638181

RESUMEN

Metastatic disease is a major cause of death for patients with melanoma. Melanoma cells can become metastatic not only due to cell-intrinsic plasticity but also due to cancer-induced protumorigenic remodeling of the immune microenvironment. Here, we report that innate immune surveillance by natural killer (NK) cells is bypassed by human melanoma cells expressing the stem cell marker NGFR. Using in vitro and in vivo cytotoxic assays, we show that NGFR protects melanoma cells from NK cell-mediated killing and, furthermore, boosts metastasis formation in a mouse model with adoptively transferred human NK cells. Mechanistically, NGFR leads to down-regulation of NK cell activating ligands and simultaneous up-regulation of the fatty acid stearoyl-coenzyme A desaturase (SCD) in melanoma cells. Notably, pharmacological and small interfering RNA-mediated inhibition of SCD reverted NGFR-induced NK cell evasion in vitro and in vivo. Hence, NGFR orchestrates immune control antagonizing pathways to protect melanoma cells from NK cell clearance, which ultimately favors metastatic disease.


Asunto(s)
Antineoplásicos , Melanoma , Ratones , Animales , Humanos , Línea Celular Tumoral , Melanoma/patología , Células Asesinas Naturales , Lípidos , Microambiente Tumoral , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo
18.
Autophagy ; 19(4): 1049-1054, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36628432

RESUMEN

In this editors' corner, the section editors were asked to indicate where they see the autophagy field heading and to suggest what they consider to be key unanswered questions in their specialty area.


Asunto(s)
Autofagia , Investigación Biomédica , Investigación Biomédica/tendencias
19.
J Med Virol ; 95(1): e27840, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35524342

RESUMEN

Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are two persistent oncogenic γ-herpesviruses with an exclusive tropism for humans. They cause cancers of lymphocyte, epithelial and endothelial cell origin, such as Burkitt's and Hodgkin's lymphoma, primary effusion lymphoma, nasopharyngeal carcinoma, and Kaposi sarcoma. Mutations in immune-related genes but also adverse events during immune checkpoint inhibition in cancer patients have revealed molecular requirements for immune control of EBV and KSHV. These include costimulatory and coinhibitory receptors on T cells that are currently explored or already therapeutically targeted in tumor patients. This review discusses these co-receptors and their influence on EBV- and KSHV-associated diseases. The respective studies reveal surprising specificities of some of these receptors for immunity to these tumor viruses, benefits of their blockade for some but not other virus-associated diseases, and that EBV- and KSHV-specific immune control should be monitored during immune checkpoint inhibition to prevent adverse events that might be associated with their reactivation during treatment.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Infecciones por Herpesviridae , Herpesvirus Humano 8 , Neoplasias , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 4/genética , Inhibidores de Puntos de Control Inmunológico , Linfocitos T
20.
Viruses ; 14(12)2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36560713

RESUMEN

The two human tumor viruses, Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection with both viruses as observed in one of their associated malignancies, namely primary effusion lymphoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize what is known about their innate and adaptive immune control which both seem to be required to ensure asymptomatic persistent co-infection with these two human tumor viruses. A better understanding of this immune control might allow us to prepare for vaccination against EBV and KSHV in the future.


Asunto(s)
Coinfección , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 8 , Neoplasias , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 4 , Virus Oncogénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA