Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(7)2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37510270

RESUMEN

Cipangopaludina cathayensis (Gastropoda: Prosobranchia; Mesogastropoda; Viviparidae) is widely distributed in the freshwater habitats of China. It is an economically important snail with high edible and medicinal value. However, the genomic resources and the reference genome of this snail are lacking. In this study, we assembled the first chromosome-level genome of C. cathayensis. The preliminary assembly genome was 1.48 Gb in size, with a contig N50 size of 93.49 Mb. The assembled sequences were anchored to nine pseudochromosomes using Hi-C data. The final genome after Hi-C correction was 1.48 Gb, with a contig N50 of 98.49 Mb and scaffold N50 of 195.21 Mb. The anchored rate of the chromosome was 99.99%. A total of 22,702 protein-coding genes were predicted. Phylogenetic analyses indicated that C. cathayensis diverged with Bellamya purificata approximately 158.10 million years ago. There were 268 expanded and 505 contracted gene families in C. cathayensis when compared with its most recent common ancestor. Five putative genes under positive selection in C. cathayensis were identified (false discovery rate <0.05). These genome data provide a valuable resource for evolutionary studies of the family Viviparidae, and for the genetic improvement of C. cathayensis.


Asunto(s)
Genoma , Genómica , Animales , Filogenia , Genoma/genética , Caracoles/genética , Cromosomas/genética
2.
PLoS One ; 11(2): e0149414, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26925843

RESUMEN

BACKGROUND: Turbot Scophthalmus maximus is an economically important species extensively aquacultured in China. The genetic selection program is necessary and urgent for the sustainable development of this industry, requiring more and more genome background knowledge. Transcriptome sequencing is an excellent alternative way to identify transcripts involved in specific biological processes and exploit a considerable quantity of molecular makers when no genome sequences are available. In this study, a comprehensive transcript dataset for major tissues of S. maximus was produced on basis of an Illumina platform. RESULTS: Total RNA was isolated from liver, spleen, kidney, cerebrum, gonad (testis and ovary) and muscle. Equal quantities of RNA from each type of tissues were pooled to construct two cDNA libraries (male and female). Using the Illumina paired-end sequencing technology, nearly 44.22 million clean reads in length of 100 bp were generated and then assembled into 106,643 contigs, of which 71,107 were named unigenes with an average length of 892 bp after the elimination of redundancies. Of these, 24,052 unigenes (33.83% of the total) were successfully annotated. GO, KEGG pathway mapping and COG analysis were performed to predict potential genes and their functions. Based on our sequence analysis and published documents, many candidate genes with fundamental roles in sex determination and gonad differentiation (dmrt1), growth (ghrh, myf5, prl/prlr) and immune response (TLR1/TLR21/TLR22, IL-15/IL-34), were identified for the first time in this species. In addition, a large number of credible genetic markers, including 21,192 SSRs and 8,642 SNPs, were identified in the present dataset. CONCLUSION: This informative transcriptome provides valuable new data to increase genomic resources of Scophthalmus maximus. The future studies of corresponding gene functions will be very useful for the management of reproduction, growth and disease control in turbot aquaculture breeding programs. The molecular markers identified in this database will aid in genetic linkage analyses, mapping of quantitative trait loci, and acceleration of marker assisted selection programs.


Asunto(s)
Peces Planos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Gónadas/fisiología , Transcriptoma , Animales , Biología Computacional , Femenino , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunidad/genética , Masculino , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Procesos de Determinación del Sexo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA