Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
Adv Sci (Weinh) ; : e2402335, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757666

RESUMEN

Destructive periodontitis destroys alveolar bone and eventually leads to tooth loss. While guided bone regeneration, which is based on creating a physical barrier to hinder the infiltration of epithelial and connective tissues into defect sites, has been widely used for alveolar bone regeneration, its outcomes remain variable. In this work, a multifunctional nanofibrous hollow microsphere (NFHMS) is developed for enhanced alveolar bone regeneration. The NFHMS is first prepared via combining a double emulsification and a thermally induced phase separation process. Next, E7, a short peptide with high specific affinity to bone marrow-derived stem cells (BMSCs), is conjugated onto the surface of NFHMS. After that, bone forming peptide (BFP), a short peptide derived from bone morphology protein 7 is loaded in calcium phosphate (CaP) nanoparticles, which are further encapsulated in the hollow space of the NFHMS-E7 to form NFHMS-E7-CaP/BFP. The NFHMS-E7-CaP/BFP selectively promoted the adhesion of BMSCs and expelled the adhesion of fibroblasts and epithelial cells. In addition, the BFP is sustainedly released from the NFHMS-E7-CaP/BFP to enhance the osteogenesis of BMSCs. A rat challenging fenestration defect model showed that the NFHMS-E7-CaP/BFP significantly enhanced alveolar bone tissue regeneration. This work provides a novel bioengineering approach for guided bone regeneration.

2.
BMC Pediatr ; 24(1): 340, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755571

RESUMEN

PURPOSE: To investigate the relationship between multi-dimensional aspects of screen exposure and autistic symptoms, as well as neuropsychological development in children with ASD. METHODS: We compared the ScreenQ and Griffiths Development Scales-Chinese Language Edition (GDS-C) of 636 ASD children (40.79 ± 11.45 months) and 43 typically developing (TD) children (42.44 ± 9.61 months). Then, we analyzed the correlations between ScreenQ and Childhood Autism Rating Scale (CARS), and GDS-C. We further used linear regression model to analyze the risk factors associated with high CARS total scores and low development quotients (DQs) in children with ASD. RESULTS: The CARS of children with ASD was positively correlated with the ScreenQ total scores and "access, frequency, co-viewing" items of ScreenQ. The personal social skills DQ was negatively correlated with the "access, frequency, content, co-viewing and total scores" of ScreenQ. The hearing-speech DQ was negatively correlated with the "frequency, content, co-viewing and total scores" of ScreenQ. The eye-hand coordination DQ was negatively correlated with the "frequency and total scores" of ScreenQ. The performance DQ was negatively correlated with the "frequency" item of ScreenQ. CONCLUSION: ScreenQ can be used in the study of screen exposure in children with ASD. The higher the ScreenQ scores, the more severe the autistic symptoms tend to be, and the more delayed the development of children with ASD in the domains of personal-social, hearing-speech and eye-hand coordination. In addition, "frequency" has the greatest impact on the domains of personal social skills, hearing-speech, eye-hand coordination and performance of children with ASD.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Trastorno del Espectro Autista/diagnóstico , Masculino , Femenino , Preescolar , Pruebas Neuropsicológicas , Tiempo de Pantalla , Estudios de Casos y Controles , Niño , Desarrollo Infantil , Habilidades Sociales
3.
RSC Adv ; 14(13): 9391-9405, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38566784

RESUMEN

Seven unknown compounds 1-7, including four sesquiterpenoids, one azulene-type, one indene-type, and one rare hexanorcucurbitacin, together with eleven knowns ones (8-16), were isolated from the agarwood chips of Aquilaria malaccensis. The structures of the isolated compounds were elucidated by extensive spectroscopic methods such as mass spectrometry, UV, IR, NMR spectroscopy. The precise stereo-chemical configurations of new compounds were determined by calculated ECD spectra data, as well as a single-crystal X-ray diffraction analysis. The isolated compounds 1-7 were evaluated by estimating the levels of nitric oxide (NO), TNF-α, and the expression of enzyme iNOS, and COX-2. Among them, a rare hexanortriterpenoid (7) derived from a cucurbitane-type triterpenoid showed the significantly attenuated neuro-inflammatory effects via the STAT1/AKT/MAPK/NLRP3 signaling pathway on the mechanistic studies.

4.
Sci Rep ; 14(1): 8102, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582921

RESUMEN

Lung cancer is a major public health issue and heavy burden in China and worldwide due to its high incidence and mortality without effective treatment. It's imperative to develop new treatments to overcome drug resistance. Natural products from food source, given their wide-ranging and long-term benefits, have been increasingly used in tumor prevention and treatment. This study revealed that Hibiscus manihot L. flower extract (HML) suppressed the proliferation and migration of A549 cells in a dose and time dependent manner and disrupting cell cycle progression. HML markedly enhanced the accumulation of ROS, stimulated the dissipation of mitochondrial membrane potential (MMP) and that facilitated mitophagy through the loss of mitochondrial function. In addition, HML induced apoptosis by activation of the PTEN-P53 pathway and inhibition of ATG5/7-dependent autophagy induced by PINK1-mediated mitophagy in A549 cells. Moreover, HML exert anticancer effects together with 5-FU through synergistic effect. Taken together, HML may serve as a potential tumor prevention and adjuvant treatment for its functional attributes.


Asunto(s)
Hibiscus , Neoplasias Pulmonares , Manihot , Humanos , Células A549 , Hibiscus/metabolismo , Manihot/metabolismo , Autofagia , Neoplasias Pulmonares/patología , Flores/metabolismo , Apoptosis , Especies Reactivas de Oxígeno/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38625761

RESUMEN

Pulsed magnetic field treatment can enhance cell membrane permeability, allowing large molecular substances that normally cannot pass through the cell membrane to enter the cell. This research holds significant prospects for biomedical applications. However, the mechanism underlying pulsed magnetic field-induced cell permeabilization remains unclear, impeding further progress in research related to pulsed magnetic field. Currently, hypotheses about the mechanism are struggling to explain experimental results. Therefore, this study developed a parameter-adjustable pulsed magnetic field generator and designed experiments. Starting from the widely accepted hypothesis of "induced electric fields by pulsed magnetic field," we conducted a preliminary exploration of the biophysical mechanisms underlying pulsed magnetic field-induced cell permeabilization. Finally, we have arrived at an intriguing conclusion: under the current technical parameters, the impact of the pulsed magnetic field itself is the primary factor influencing changes in cell membrane permeability, rather than the induced electric field. This conclusion holds significant implications for understanding the biophysical mechanisms behind pulsed magnetic field therapy and its potential biomedical applications.

6.
Aquat Toxicol ; 271: 106928, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688065

RESUMEN

The significant role of aquatic phytoplankton in global primary productivity, accounting for approximately 50 % on an annual basis, has been recognized as a crucial factor in the reduction of Hg(II). In this study, we compared the efficiency of Hg(II) photoreduction mediated by three types of algae leaching dissolved organic matter (DOM) and humic acid (DOM-HA). Especially, we investigated the potential effects of algae-leached DOM on the photoreduction of Hg(II) and its subsequent uptake by lettuce, which serves as an indicator of Hg bioavailability for aquatic plants. The results revealed that under light conditions, the conversion of Hg(II) to Hg(0) mediated by algae-leached DOM and DOM-HA was 6.4-39.9 % higher compared to dark condition. Furthermore, the free radical quenching experiment demonstrated that the reduction of Hg(II) mediated by DOM-HA was higher than algae-leached DOM, mainly due to its ability to generate superoxide anion (O2•-). Moreover, the photoreduction efficiences of Hg(II) mediated by algae-leached DOM were 29-18 % lower compared to DOM-HA. The FT-IR analysis revealed that the production of -SH from algae-leached DOM led to the formation of strong metal-complexes, which restricts the reduction process from Hg(II) to Hg(0). Finally, the hydroponics experiment demonstrated that algae-leached DOM inhibited the bioavailability of Hg(II) to plants more effectively than DOM-HA. Our research emphasizes the significant functional roles and potential mechanisms of algae in reducing Hg levels, thereby influencing the availability of Hg in aquatic ecosystems.


Asunto(s)
Sustancias Húmicas , Lactuca , Luz , Mercurio , Contaminantes Químicos del Agua , Lactuca/metabolismo , Lactuca/efectos de la radiación , Oxidación-Reducción
7.
Front Mol Neurosci ; 17: 1345811, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660386

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is the most common off-target adverse effects caused by various chemotherapeutic agents, such as cisplatin, oxaliplatin, paclitaxel, vincristine and bortezomib. CIPN is characterized by a substantial loss of primary afferent sensory axonal fibers leading to sensory disturbances in patients. An estimated of 19-85% of patients developed CIPN during the course of chemotherapy. The lack of preventive measures and limited treatment options often require a dose reduction or even early termination of life-saving chemotherapy, impacting treatment efficacy and patient survival. In this Review, we summarized the current understanding on the pathogenesis of CIPN. One prominent change induced by chemotherapeutic agents involves the disruption of neuronal cytoskeletal architecture and axonal transport dynamics largely influenced by the interference of microtubule stability in peripheral neurons. Due to an ineffective blood-nerve barrier in our peripheral nervous system, exposure to some chemotherapeutic agents causes mitochondrial swelling in peripheral nerves, which lead to the opening of mitochondrial permeability transition pore and cytochrome c release resulting in degeneration of primary afferent sensory fibers. The exacerbated nociceptive signaling and pain transmission in CIPN patients is often linked the increased neuronal excitability largely due to the elevated expression of various ion channels in the dorsal root ganglion neurons. Another important contributing factor of CIPN is the neuroinflammation caused by an increased infiltration of immune cells and production of inflammatory cytokines. In the central nervous system, chemotherapeutic agents also induce neuronal hyperexcitability in the spinal dorsal horn and anterior cingulate cortex leading to the development of central sensitization that causes CIPN. Emerging evidence suggests that the change in the composition and diversity of gut microbiota (dysbiosis) could have direct impact on the development and progression of CIPN. Collectively, all these aspects contribute to the pathogenesis of CIPN. Recent advances in RNA-sequencing offer solid platform for in silico drug screening which enable the identification of novel therapeutic agents or repurpose existing drugs to alleviate CIPN, holding immense promises for enhancing the quality of life for cancer patients who undergo chemotherapy and improve their overall treatment outcomes.

8.
J Biol Chem ; 300(5): 107259, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582453

RESUMEN

Selenoprotein I (SELENOI) catalyzes the final reaction of the CDP-ethanolamine branch of the Kennedy pathway, generating the phospholipids phosphatidylethanolamine (PE) and plasmenyl-PE. Plasmenyl-PE is a key component of myelin and is characterized by a vinyl ether bond that preferentially reacts with oxidants, thus serves as a sacrificial antioxidant. In humans, multiple loss-of-function mutations in genes affecting plasmenyl-PE metabolism have been implicated in hereditary spastic paraplegia, including SELENOI. Herein, we developed a mouse model of nervous system-restricted SELENOI deficiency that circumvents embryonic lethality caused by constitutive deletion and recapitulates phenotypic features of hereditary spastic paraplegia. Resulting mice exhibited pronounced alterations in brain lipid composition, which coincided with motor deficits and neuropathology including hypomyelination, elevated reactive gliosis, and microcephaly. Further studies revealed increased lipid peroxidation in oligodendrocyte lineage cells and disrupted oligodendrocyte maturation both in vivo and in vitro. Altogether, these findings detail a critical role for SELENOI-derived plasmenyl-PE in myelination that is of paramount importance for neurodevelopment.

9.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38610341

RESUMEN

It is urgent for automated electric transportation vehicles in coal mines to have the ability of self-adaptive tracking target constant deceleration to ensure stable and safe braking effects in long underground roadways. However, the current braking control system of underground electric trackless rubber-tired vehicles (UETRVs) still adopts multi-level constant braking torque control, which cannot achieve target deceleration closed-loop control. To overcome the disadvantages of lower safety and comfort, and the non-precise stopping distance, this article describes the architecture and working principle of constant deceleration braking systems with an electro-mechanical braking actuator. Then, a deceleration closed-loop control algorithm based on fuzzy neural network PID is proposed and simulated in Matlab/Simulink. Finally, an actual brake control unit (BCU) is built and tested in a real industrial field setting. The test illustrates the feasibility of this constant deceleration control algorithm, which can achieve constant decelerations within a very short time and maintain a constant value of -2.5 m/s2 within a deviation of ±0.1 m/s2, compared with the deviation of 0.11 m/s2 of fuzzy PID and the deviation of 0.13 m/s2 of classic PID. This BCU can provide electric and automated mine vehicles with active and smooth deceleration performance, which improves the level of electrification and automation for mine transport machinery.

11.
J Pers Med ; 14(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38541004

RESUMEN

BACKGROUND: Primary liver cancer (PLC) ranks third in terms of fatality rate among all malignant tumors worldwide. Proteomics and metabolomics have become widely utilized in identifying causes and diagnostic indicators of PLC. Nevertheless, in studies aiming to identify proteins/metabolites that experienced significant changes before PLC, the potential impact of reverse causation and confounding variables still needs to be fully addressed. METHODS: This study thoroughly investigated the causal relationship between 4719 blood proteins, 21 amino acids, and the risk of PLC using the Mendelian randomization (MR) method. In addition, through a comprehensive analysis of the TCGA-LIHC cohort and GEO databases, we evaluated the differentially expressed genes (DEGs) related to serine metabolism in diagnosing and predicting the prognosis of patients with PLC. RESULTS: A total of 63 proteins have been identified as connected to the risk of PLC. Additionally, there has been confirmation of a positive cause-effect between PLC and the concentration of serine. The integration of findings from both MR analyses determined that the protein associated with PLC risk exhibited a significant correlation with serine metabolism. Upon careful analysis of the TCGA-LIHC cohort, it was found that eight DEGs are linked to serine metabolism. After thoroughly validating the GEO database, two DEGs, TDO2 and MICB, emerged as potential biomarkers for diagnosing PLC. CONCLUSIONS: Two proteins involved in serine metabolism, MICB and TDO2, are causally linked to the risk of PLC and could potentially be used as diagnostic indicators.

12.
CNS Neurosci Ther ; 30(3): e14638, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488445

RESUMEN

AIMS: The open-loop nature of conventional deep brain stimulation (DBS) produces continuous and excessive stimulation to patients which contributes largely to increased prevalence of adverse side effects. Cerebellar ataxia is characterized by abnormal Purkinje cells (PCs) dendritic arborization, loss of PCs and motor coordination, and muscle weakness with no effective treatment. We aim to develop a real-time field-programmable gate array (FPGA) prototype targeting the deep cerebellar nuclei (DCN) to close the loop for ataxia using conditional double knockout mice with deletion of PC-specific LIM homeobox (Lhx)1 and Lhx5, resulting in abnormal dendritic arborization and motor deficits. METHODS: We implanted multielectrode array in the DCN and muscles of ataxia mice. The beneficial effect of open-loop DCN-DBS or closed-loop DCN-DBS was compared by motor behavioral assessments, electromyography (EMG), and neural activities (neurospike and electroencephalogram) in freely moving mice. FPGA board, which performed complex real-time computation, was used for closed-loop DCN-DBS system. RESULTS: Closed-loop DCN-DBS was triggered only when symptomatic muscle EMG was detected in a real-time manner, which restored motor activities, electroencephalogram activities and neurospike properties completely in ataxia mice. Closed-loop DCN-DBS was more effective than an open-loop paradigm as it reduced the frequency of DBS. CONCLUSION: Our real-time FPGA-based DCN-DBS system could be a potential clinical strategy for alleviating cerebellar ataxia and other movement disorders.


Asunto(s)
Ataxia Cerebelosa , Estimulación Encefálica Profunda , Trastornos del Movimiento , Humanos , Ratones , Animales , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/terapia , Estimulación Encefálica Profunda/métodos , Cerebelo , Células de Purkinje/fisiología , Núcleos Cerebelosos/fisiología
13.
Int J Biol Macromol ; 264(Pt 1): 130534, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432276

RESUMEN

The objective was to utilize spent coffee grounds (SCG) as charring agent to combine with ammonium polyphosphate (APP) to prepare flame retardant poly(lactic acid) (PLA) composites with improved toughness. PLA/APP-SCG and PLA/APP-SCG/KH560 composites were prepared, and silane coupling agent KH560 was applied to improve particle-matrix interfacial compatibility. The particle-matrix interface, char formation, flame retardancy, mechanical properties and fracture morphology of PLA composites were studied. Results showed that PLA/APP-SCG5% and PLA/APP-SCG20% passed UL-94 V-0 rating, and increase in charred residues was favorable for improving flame retardancy. Improved toughness was also obtained compared to PLA, attributed to debonding of APP from matrix under external force as well as plasticization effect of coffee oil contained in SCG. PLA/APP-SCG5%/KH560 and PLA/APP-SCG20%/KH560 showed smaller elongation at break and impact strength compared to PLA/APP-SCG5% and PLA/APP-SCG20%, respectively. The improved interfacial compatibility was unfavorable for debonding of APP from matrix, and both APP and SCG played the role of enhancing strength, thus decreasing toughness. PLA/APP-SCG/KH560 counterparts were actually set as parallel samples to prove that PLA/APP-SCG composites showed improved toughness with weak interfacial compatibility. This study has provided a practical approach to utilize bio-derived wastes as charring agent to prepare flame retardant PLA composites with enhanced toughness.


Asunto(s)
Café , Retardadores de Llama , Poliésteres , Polifosfatos
14.
iScience ; 27(3): 109197, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433902

RESUMEN

Magnesium alloy is an excellent material for biodegradable cerebrovascular stents. However, the rapid degradation rate of magnesium alloy will make stent unstable. To improve the biocompatibility of magnesium alloy, in this study, biodegradable sodium alginate and carboxymethyl chitosan (SA/CMCS) was used to coat onto hydrothermally treated the surface of magnesium alloy by a dipping coating method. The results show that the SA/CMCS coating facilitates the growth, proliferation, and migration of endothelial cells and promotes neovascularization. Moreover, the SA/CMCS coating suppresses macrophage activation while promoting their transformation into M2 type macrophages. Overall, the SA/CMCS coating demonstrates positive effects on the safety and biocompatibility of magnesium alloy after implantation, and provide a promising therapy for the treatment of intracranial atherosclerotic stenosis in the future.

15.
Updates Surg ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438686

RESUMEN

With the emergence of novel variants, Omicron variant caused a different clinical picture than the previous variants and little evidence was reported regarding perioperative outcomes after Omicron variants. The aim of the study was to evaluate the postoperative outcomes of gastrointestinal cancer patients following Omicron variants infection and also to determine the timing of surgery after infection recovery. A total of 124 patients who underwent gastrointestinal cancer surgery with prior SARS-CoV-2 infection between December 2022 and February 2023 were retrospectively reviewed. 174 cases underwent the same operation during December 2018 and February 2019 as control group. SARS-CoV-2-infected patients were further categorized into three groups based on infected time (1-3 weeks; 4-6 weeks; and ≥ 7 weeks). 90.3% of SARS-CoV-2-infected patients had mild symptoms. The COVID-19 vaccination rate was 71.0%, with a full vaccination rate of 48.4%. There were no significant differences in 30-day morbidity and mortality. There was also no significant difference in pulmonary complications, cardiovascular complications, and surgical complications between the three different diagnosis time groups. In conclusion, reducing waiting time for elective surgery was safe for gastrointestinal cancer patients in the context of an increased transmissibility and milder illness severity with Omicron variant.

16.
Phytomedicine ; 128: 155424, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537441

RESUMEN

BACKGROUND: Leukopenia could be induced by chemotherapy, which leads to bone marrow suppression and even affects the therapeutic progression of cancer. Qijiao Shengbai Capsule (QSC) has been used for the treatment of leukopenia in clinic, but its bioactive components and mechanisms have not yet been elucidated clearly. PURPOSE: This study aimed to elucidate the molecular mechanisms of QSC in treating leukopenia. STUDY DESIGN: Serum pharmacochemistry, multi-omics, network pharmacology, and validation experiment were combined to study the effect of QSC in murine leukopenia model. METHODS: First, UPLC-QTOF-MS was used to clarify the absorbed components of QSC. Then, cyclophosphamide (CTX) was used to induce mice model with leukopenia, and the therapeutic efficacy of QSC was assessed by an integrative approach of multi-omics and network pharmacology strategy. Finally, molecular mechanisms and potential therapeutic targets were identified by validated experiments. RESULTS: 121 compounds absorbed in vivo were identified. QSC significantly increase the count of white blood cells (WBCs) in peripheral blood of leukopenia mice with 15 days treatment. Multi-omics and network pharmacology revealed that leukotriene pathway and MAPK signaling pathway played crucial roles during the treatment of leukopenia with QSC. Six targets (ALOX5, LTB4R, CYSLTR1, FOS, JUN, IL-1ß) and 13 prototype compounds were supposed to be the key targets and potential active components, respectively. The validation experiment further confirmed that QSC could effectively inhibit the inflammatory response induced by leukopenia. The inhibitors of ALOX5 activity can significantly increase the number of WBCs in leukopenia mice. Molecular docking of ALOX5 suggested that calycosin, daidzein, and medicarpin were the potentially active compounds of QSC. CONCLUSION: Leukotriene pathway was found for the first time to be a key role in the development of leukopenia, and ALOX5 was conformed as the potential target. QSC may inhibit the inflammatory response and interfere the leukotriene pathway, it is able to improve hematopoiesis and achieve therapeutic effects in the mice with leukopenia.


Asunto(s)
Medicamentos Herbarios Chinos , Leucopenia , Leucotrienos , Animales , Leucopenia/tratamiento farmacológico , Leucopenia/inducido químicamente , Medicamentos Herbarios Chinos/farmacología , Ratones , Leucotrienos/metabolismo , Masculino , Ciclofosfamida , Modelos Animales de Enfermedad , Farmacología en Red , Transducción de Señal/efectos de los fármacos , Cápsulas , Multiómica
17.
J Appl Clin Med Phys ; : e14327, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488663

RESUMEN

PURPOSE: This study aimed to develop a hybrid multi-channel network to detect multileaf collimator (MLC) positional errors using dose difference (DD) maps and gamma maps generated from low-resolution detectors in patient-specific quality assurance (QA) for Intensity Modulated Radiation Therapy (IMRT). METHODS: A total of 68 plans with 358 beams of IMRT were included in this study. The MLC leaf positions of all control points in the original IMRT plans were modified to simulate four types of errors: shift error, opening error, closing error, and random error. These modified plans were imported into the treatment planning system (TPS) to calculate the predicted dose, while the PTW seven29 phantom was utilized to obtain the measured dose distributions. Based on the measured and predicted dose, DD maps and gamma maps, both with and without errors, were generated, resulting in a dataset with 3222 samples. The network's performance was evaluated using various metrics, including accuracy, sensitivity, specificity, precision, F1-score, ROC curves, and normalized confusion matrix. Besides, other baseline methods, such as single-channel hybrid network, ResNet-18, and Swin-Transformer, were also evaluated as a comparison. RESULTS: The experimental results showed that the multi-channel hybrid network outperformed other methods, demonstrating higher average precision, accuracy, sensitivity, specificity, and F1-scores, with values of 0.87, 0.89, 0.85, 0.97, and 0.85, respectively. The multi-channel hybrid network also achieved higher AUC values in the random errors (0.964) and the error-free (0.946) categories. Although the average accuracy of the multi-channel hybrid network was only marginally better than that of ResNet-18 and Swin Transformer, it significantly outperformed them regarding precision in the error-free category. CONCLUSION: The proposed multi-channel hybrid network exhibits a high level of accuracy in identifying MLC errors using low-resolution detectors. The method offers an effective and reliable solution for promoting quality and safety of IMRT QA.

18.
Adv Sci (Weinh) ; : e2307442, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520084

RESUMEN

Chondrodysplasia is closely associated with low birth weight and increased susceptibility to osteoarthritis in adulthood. Prenatal prednisone exposure (PPE) can cause low birth weight; however, its effect on offspring cartilage development remains unexplored. Herein, rats are administered clinical doses of prednisone intragastrically on gestational days (GDs) 0-20 and underwent long-distance running during postnatal weeks (PWs) 24-28. Knee cartilage is assayed for quality and related index changes on GD20, PW12, and PW28. In vitro experiments are performed to elucidate the mechanism. PPE decreased cartilage proliferation and matrix synthesis, causing offspring chondrodysplasia. Following long-distance running, the PPE group exhibited more typical osteoarthritis-like changes. Molecular analysis revealed that PPE caused cartilage circRNomics imbalance in which circGtdc1 decreased most significantly and persisted postnatally. Mechanistically, prednisolone reduced circGtdc1 expression and binding with Srsf1 to promote degradation of Srsf1 via K48-linked polyubiquitination. This further inhibited the formation of EDA/B+Fn1 and activation of PI3K/AKT and TGFß pathways, reducing chondrocyte proliferation and matrix synthesis. Finally, intra-articular injection of offspring with AAV-circGtdc1 ameliorated PPE-induced chondrodysplasia, but this effect is reversed by Srsf1 knockout. Altogether, this study confirms that PPE causes chondrodysplasia and susceptibility to osteoarthritis by altering the circGtdc1-Srsf1-Fn1 axis; in vivo, overexpression of circGtdc1 can represent an effective intervention target for ameliorating PPE-induced chondrodysplasia.

19.
Front Chem ; 12: 1375223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496270

RESUMEN

Avermectin fermentation residue (AFR) is rich in proteins, which can be depolymerized to value-added amino acids for in-plant reuse. The hydrochloric acid (HCl) hydrolysis is performed and investigated under different conditions, including HCl concentration, solid-liquid ratio, temperature, and time. The hydrolysis degree (HD) of 67.7% can be achieved. The empirical correlation of HD is established with a good practicability to control the HD and predict the experimental conditions. Solid-liquid reaction is confirmed to be dominant during the hydrolysis process. There are 17 kinds of amino acids in the hydrolysate, benefiting the reuse. Avermectin is not detected in the hydrolysate and AFR, and the mass of AFR is reduced by 53.8 wt%. This work provides a novel strategy for the environmentally friendly treatment and meanwhile the resource recovery of AFR.

20.
Osteoporos Int ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38459138

RESUMEN

PURPOSE: This study aimed to apply a newly developed semi-automatic phantom-less QCT (PL-QCT) to measure proximal humerus trabecular bone density based on chest CT and verify its accuracy and precision. METHODS: Subcutaneous fat of the shoulder joint and trapezius muscle were used as calibration references for PL-QCT BMD measurement. A self-developed algorithm based on a convolution map was utilized in PL-QCT for semi-automatic BMD measurements. CT values of ROIs used in PL-QCT measurements were directly used for phantom-based quantitative computed tomography (PB-QCT) BMD assessment. The study included 376 proximal humerus for comparison between PB-QCT and PL-QCT. Two sports medicine doctors measured the proximal humerus with PB-QCT and PL-QCT without knowing each other's results. Among them, 100 proximal humerus were included in the inter-operative and intra-operative BMD measurements for evaluating the repeatability and reproducibility of PL-QCT and PB-QCT. RESULTS: A total of 188 patients with 376 shoulders were involved in this study. The consistency analysis indicated that the average bias between proximal humerus BMDs measured by PB-QCT and PL-QCT was 1.0 mg/cc (agreement range - 9.4 to 11.4; P > 0.05, no significant difference). Regression analysis between PB-QCT and PL-QCT indicated a good correlation (R-square is 0.9723). Short-term repeatability and reproducibility of proximal humerus BMDs measured by PB-QCT (CV: 5.10% and 3.41%) were slightly better than those of PL-QCT (CV: 6.17% and 5.64%). CONCLUSIONS: We evaluated the bone quality of the proximal humeral using chest CT through the semi-automatic PL-QCT system for the first time. Comparison between it and PB-QCT indicated that it could be a reliable shoulder BMD assessment tool with acceptable accuracy and precision. This study developed and verify a semi-automatic PL-QCT for assessment of proximal humeral bone density based on CT to assist in the assessment of proximal humeral osteoporosis and development of individualized treatment plans for shoulders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA