RESUMEN
Laevistrombus canarium, also known as dog conch, is a marine gastropod mollusk widely distributed in the Indo-Pacific region. It is an economically crucial species; however, its population has been declining due to overfishing and overexploitation. In this study, the suitable salinity for juvenile L. canarium was between 20 and 35. Diatoms and biological detritus by using flow-water from the fish pool were the most favorable diets for newly metamorphosed and 10 mm juveniles. In the polyculture experiment, L. canarium was cultured with whiteleg shrimp, tilapia, small abalone, purple sea urchin, and collector urchin. Better growth was found in all co-culture groups except with whiteleg shrimp. We also found that the polyculture system with or without substrates significantly affected the growth of juveniles. Additionally, we observed that water temperature was the most crucial factor for growth and survival; a water temperature of less than 10 °C might cause the death of L. canarium. We have proposed a novel polyculture and water-flow method for mass production of L. canarium and evaluated the feasibility and benefits of polyculture with other species. The findings from this work reveal the potentiality of L. canarium in integrated multitrophic aquaculture (IMTA) and its implication for aquaculture and resource restoration.
RESUMEN
The first complete mitochondrial genome of Metasepia tullbergi has been characterized in this study. The circular mitogenome is 16182 bp in length and comprises 13 protein-coding genes (PCGs), 22 transfer RNA genes, and two ribosomal RNA genes. The organization of these genes is highly consistent with that of other Sepiidae. The overall base composition of mitogenome is 39.20% A, 36.07% T, 8.98% G, and 15.75% C, with 75.27% AT. Phylogenetic analysis further suggests that M. tullbergi is placed within the Sepiidae and is closely related to Sepia latimanus and S. apama.
RESUMEN
Cannibalism is a major problem in lobster and crab aquaculture. Reducing the aggressive characteristics of lobsters and crabs can improve survival during the culturing process. In this study, juvenile scalloped spiny lobsters (Panulirus homarus) and crucifix crabs (Charybdis feriatus) were both cultured under different shelter and live prey conditions. Groups with shelter (seaweed and cotton filter) showed a better survival rate than the control group (no shelter; p < 0.05) for both Pa. homarus and Char. feriatus. Co-culturing with live prey (Litopenaeus vannamei) significantly benefited the juveniles of Pa. homarus and visibly increased the survival of juvenile Char. feriatus. Although providing shelter is currently the main method for reducing agonistic behavior, it must be continually altered as the lobsters and crabs grow. Live prey can grow and attract lobsters and crabs to hunt them, and live prey can be supplemented at any time. They can also be used as an additional source of income during the harvest season.