Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(11): 768, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007430

RESUMEN

Psoriasis is a chronic inflammatory skin disease that affects millions of people worldwide. Sulforaphane (SFN) has been shown to have anti-inflammatory and antioxidant properties. In this study, we investigated the effects of SFN on a mouse model of psoriasis induced by imiquimod (IMQ) and its underlying molecular mechanism. Mice treated with SFN showed significant improvement in psoriatic symptoms, including reduced erythema, scales, and cutaneous thickness. Histopathological analysis and immunohistochemical staining revealed decreased expression of K16, K17, and Ki67 in SFN-treated mice, indicating reduced abnormal differentiation of keratinocytes and cutaneous inflammation. SFN treatment also reduced the activation of STAT3 and NF-κB pathways and downregulated pro-inflammatory cytokines IL-1ß, IL-6, and CCL2. In vitro experiments using HaCaT cells demonstrated that SFN inhibited IL-22 and TNF-α-induced activation of inflammatory pathways and keratinocyte proliferation. Network pharmacology analysis suggested that the KEAP1-NRF2 pathway might be involved in the protective effects of SFN on psoriasis. We observed reduced NRF2 expression in human psoriatic lesions, and subsequent experiments showed that SFN activated KEAP1-NRF2 pathway in vivo and in vitro. Importantly, NRF2-deficient mice exhibited aggravated psoriasis-like symptoms and reduced response to SFN treatment. Our findings indicate that SFN ameliorates psoriasis symptoms and inflammation through the KEAP1-NRF2 pathway, suggesting a potential therapeutic role for SFN in the treatment of psoriasis.


Asunto(s)
Antioxidantes , Psoriasis , Humanos , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Psoriasis/patología , Queratinocitos/metabolismo , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
2.
Int Immunopharmacol ; 122: 110558, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37393836

RESUMEN

Atopic dermatitis (AD) is a common chronic inflammatory skin disease causing erythema and itching. The etiology of AD is complex and not yet clear. Vitamin D is a fat-soluble vitamin that promotes skin cell growth and differentiation and regulates immune function. This study aimed to explore the therapeutic effect of calcifediol, the active metabolite of vitamin D, on experimental AD and the possible mechanism of action. We found that the levels of vitamin D binding protein (VDBP) and vitamin D receptor (VDR) in biopsy skin samples from AD patients decreased compared with controls. We used 2,4-dinitrochlorobenzene (DNCB) to induce an AD mouse model on the ear and back of BALB/c mice. A total of five groups were used: the control group, the AD group, the AD + calcifediol group, the AD + dexamethasone group, and the calcifediol alone group. Under calcifediol treatment, mice exhibited reduced spinous layer thickening, reduced inflammatory cell infiltration, downregulated aquaporin 3 (AQP3) expression, and restored the barrier function of the skin. Simultaneous calcifediol treatment decreased STAT3 phosphorylation, inhibited inflammation and chemokine release, decreased AKT1 and mTOR phosphorylation, and suppressed epidermal cell proliferation and abnormal differentiation. In conclusion, our study demonstrated that calcifediol significantly protected mice against DNCB-induced AD. In a mouse model of AD, calcifediol may reduce inflammatory cell infiltration and chemokines by inhibiting the phosphorylation of STAT3 and may restore skin barrier function through the downregulation of AQP3 protein expression and inhibition of cell proliferation.


Asunto(s)
Dermatitis Atópica , Ratones , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dinitroclorobenceno , Vitamina D/uso terapéutico , Vitamina D/farmacología , Calcifediol/efectos adversos , Piel/patología , Quimiocinas , Vitaminas/farmacología , Inmunidad , Ratones Endogámicos BALB C , Citocinas/metabolismo
3.
Cell Death Discov ; 8(1): 141, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35351863

RESUMEN

Psoriasis is a chronic inflammatory cutaneous disease; it has been discovered that stimulation of the nervous system increases susceptibility to psoriasis. Although the cholinergic anti-inflammatory pathway, which is mediated by the alpha-7 nicotinic acetylcholine receptor (α7nAChR), is critical for controlling multiple types of inflammation, its expression pattern and pathogenesis function in psoriatic lesioned skin tissue are unknown. We hereby analyzed the expression of α7nAchR in human and mouse psoriatic skin tissue. In vivo, PNU-282987 or Methyllycaconitine, a specific agonist or antagonist of α7nAchR, were administered to imiquimod (IMQ)-induced psoriatic mouse models. The macroscopic appearance and histopathological features of the psoriatic mice skin were evaluated. In addition, cell proliferation and differentiation markers were investigated. The level of pro-inflammatory cytokines released from the lesioned skin, as well as the activation of the relevant signaling pathways, were measured. Our findings indicated that psoriatic lesional skin expressed an increased level of α7nAChR, with its tissue distribution being primarily in skin keratinocytes and macrophages. In an IMQ-induced murine psoriasis model, α7nAChR agonist PNU-282987 treatment alleviated psoriasis-like inflammation by down-regulating the expression of multiple types of pro-inflammatory mediators and normalized keratinocyte proliferation and differentiation, whereas α7nAChR antagonist treatment exacerbated its effect. Mechanically, we observed that activation of the α7nAChR inhibited the activation of the STAT3 and NF-κB signaling pathways in in vitro cultured HaCaT cells induced by Th17-related cytokine IL-6/IL-22 or Th1-related cytokine TNF-α. Taken together, these findings demonstrate that attenuation of psoriatic inflammation via the cholinergic anti-inflammatory pathway is dependent on α7nAChR activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA