Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 198: 103-15, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27163764

RESUMEN

Seedlings of Ponkan (Citrus reticulata) were irrigated with nutrient solution containing 0 (Mg-deficiency) or 1mM MgSO4 (control) every two day for 16 weeks. Thereafter, we examined magnesium (Mg)-deficiency-induced changes in leaf and root gas exchange, total soluble proteins and gene expression. Mg-deficiency lowered leaf CO2 assimilation, and increased leaf dark respiration. However, Mg-deficient roots had lower respiration. Total soluble protein level was not significantly altered by Mg-deficiency in roots, but was lower in Mg-deficient leaves than in controls. Using cDNA-AFLP, we obtained 70 and 71 differentially expressed genes from leaves and roots. These genes mainly functioned in signal transduction, stress response, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, nucleic acid, and protein metabolisms. Lipid metabolism (Ca(2+) signals)-related Mg-deficiency-responsive genes were isolated only from roots (leaves). Although little difference existed in the number of Mg-deficiency-responsive genes between them both, most of these genes only presented in Mg-deficient leaves or roots, and only four genes were shared by them both. Our data clearly demonstrated that Mg-deficiency-induced alterations of physiology and gene expression greatly differed between leaves and roots. In addition, we focused our discussion on the causes for photosynthetic decline in Mg-deficient leaves and the responses of roots to Mg-deficiency.


Asunto(s)
Citrus/genética , Citrus/fisiología , Regulación de la Expresión Génica de las Plantas , Magnesio/farmacología , Hojas de la Planta/fisiología , Tallos de la Planta/fisiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Citrus/efectos de los fármacos , Citrus/crecimiento & desarrollo , ADN Complementario/genética , Gases/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/genética , Estomas de Plantas/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Solubilidad , Factores de Tiempo
2.
Front Plant Sci ; 7: 201, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973661

RESUMEN

Magnesium (Mg)-deficiency, which affects crop productivity and quality, widespreadly exists in many agricultural crops, including citrus. However, very limited data are available on Mg-deficiency-responsive microRNAs (miRNAs) in higher plants. Using Illumina sequencing, we isolated 75 (73 known and 2 novel) up- and 71 (64 known and 7 novel) down-regulated miRNAs from Mg-deficient Citrus sinensis leaves. In addition to the remarkable metabolic flexibility as indicated by the great alteration of miRNA expression, the adaptive responses of leaf miRNAs to Mg-deficiency might also involve the following several aspects: (a) up-regulating stress-related genes by down-regulating miR164, miR7812, miR5742, miR3946, and miR5158; (b) enhancing cell transport due to decreased expression of miR3946 and miR5158 and increased expression of miR395, miR1077, miR1160, and miR8019; (c) activating lipid metabolism-related genes by repressing miR158, miR5256, and miR3946; (d) inducing cell wall-related gene expansin 8A by repressing miR779; and (e) down-regulating the expression of genes involved in the maintenance of S, K and Cu by up-regulating miR395 and miR6426. To conclude, we isolated some new known miRNAs (i.e., miR7812, miR8019, miR6218, miR1533, miR6426, miR5256, miR5742, miR5561, miR5158, and miR5818) responsive to nutrient deficiencies and found some candidate miRNAs that might contribute to Mg-deficiency tolerance. Therefore, our results not only provide novel information about the responses of plant to Mg-deficiency, but also are useful for obtaining the key miRNAs for plant Mg-deficiency tolerance.

3.
Chem Biol Drug Des ; 87(5): 664-72, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26648338

RESUMEN

A series of novel naphthalimide derivatives NI1-5 containing piperazine moieties (N-(2-hydroxyethyl)piperazine and 1-piperazinepropanol) and piperidine moieties (4-piperidinemethanol, 4-hydroxypiperidine and 4-piperidineethanol) have been synthesized and evaluated for their cytotoxic activity, spectroscopic property, and DNA binding behaviors. It was found that substituents at the 4-position remarkably influence the various activities of this series of compound. Compounds NI3-5 modified with piperidines exhibited potent cytotoxic activities against Hela, SGC-7901, and A549 cells with the IC50 values from 0.73 µm to 6.80 µm, which are better than NI1-2 functionalized with piperazines. Compounds NI1-2 showed higher binding capacity with Ct-DNA than compounds NI3-5 based on studies of UV-vis, fluorescence and CD spectra. Furthermore, compounds NI3-5, as DNA intercalators, showed fluorescence enhancement upon binding with Ct-DNA. More interestingly, fluorescence imaging studies of compound NI4 with A549 cells showed that the fluorescence predominantly appeared in the cytoplasm. These results provided a potential application of NI3-5 as anticancer therapeutic and cancer cell imaging agents.


Asunto(s)
Antineoplásicos/farmacología , ADN/química , Naftalenos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Humanos , Espectroscopía de Resonancia Magnética , Naftalenos/química , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...