Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rice (N Y) ; 17(1): 36, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780864

RESUMEN

BACKGROUND: Yield and quality are the two most important traits in crop breeding. Exploring the regulatory mechanisms that affect both yield and quality traits is of great significance for understanding the molecular genetic networks controlling these key crop attributes. Expansins are cell wall loosening proteins that play important roles in regulating rice grain size. RESULTS: We investigated the effect of OsEXPA7, encoding an expansin, on rice grain size and quality. OsEXPA7 overexpression resulted in increased plant height, panicle length, grain length, and thousand-grain weight in rice. OsEXPA7 overexpression also affected gel consistency and amylose content in rice grains, thus affecting rice quality. Subcellular localization and tissue expression analyses showed that OsEXPA7 is localized on the cell wall and is highly expressed in the panicle. Hormone treatment experiments revealed that OsEXPA7 expression mainly responds to methyl jasmonate, brassinolide, and gibberellin. Transcriptome analysis and RT-qPCR experiments showed that overexpression of OsEXPA7 affects the expression of OsJAZs in the jasmonic acid pathway and BZR1 and GE in the brassinosteroid pathway. In addition, OsEXPA7 regulates the expression of key quantitative trait loci related to yield traits, as well as regulates the expression levels of BIP1 and bZIP50 involved in the seed storage protein biosynthesis pathway. CONCLUSIONS: These results reveal that OsEXPA7 positively regulates rice yield traits and negatively regulates grain quality traits by involving plant hormone pathways and other trait-related pathway genes. These findings increase our understanding of the potential mechanism of expansins in regulating rice yield and quality traits and will be useful for breeding high-yielding and high-quality rice cultivars.

2.
J Agric Food Chem ; 71(42): 15785-15795, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37830900

RESUMEN

Acrylamide (AA), commonly formed in carbohydrate-rich thermally processed foods, exerts harmful effects on the kidney. Allicin, from crushed garlic cloves, exhibits strong biological activities. In the current study, the protection mechanisms of allicin against AA-caused nephrotoxicity were comprehensively examined using an in vivo rat model based on previous research that allicin plays a key role in improving renal function. The results showed that allicin attenuated histological changes of the kidney and ameliorated renal function. Damaged mitochondrial structures, upregulated voltage-dependent anion channel 1 expression, and decreased membrane potential and adenosine 5'-triphosphate levels were observed after AA treatment. Surprisingly, allicin notably reversed the adverse effects. Further, allicin effectively restored mitochondrial function via modulating mitochondrial biogenesis and dynamics, which might be associated with the upregulated expression of sirtuin 1 (SIRT1). Meanwhile, allicin dramatically activated the SIRT1 activity and subsequently inhibited p53 acetylation, prevented the translocation of cytochrome c to the cytoplasm, and reduced the caspase expression, thus further inhibiting mitochondrial apoptosis caused by AA. In summary, the relieving effect of allicin on AA-caused nephrotoxicity lies in its inhibition of mitochondrial dysfunction and mitochondrial apoptosis.


Asunto(s)
Acrilamida , Sirtuina 1 , Ratas , Animales , Sirtuina 1/genética , Sirtuina 1/metabolismo , Acrilamida/toxicidad , Acrilamida/metabolismo , Apoptosis , Ácidos Sulfínicos/farmacología , Disulfuros/metabolismo , Riñón/metabolismo , Mitocondrias/metabolismo
3.
Appl Environ Microbiol ; 89(10): e0052223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800939

RESUMEN

Rhodococcus opacus PD630 is a high oil-producing strain with the ability to convert lignin-derived aromatics to high values, but limited research has been done to elucidate its conversion pathway, especially the upper pathways. In this study, we focused on the upper pathways and demethylation mechanism of lignin-derived aromatics metabolism by R. opacus PD630. The results of the aromatic carbon resource utilization screening showed that R. opacus PD630 had a strong degradation capacity to the lignin-derived methoxy-containing aromatics, such as guaiacol, 3,4-veratric acid, anisic acid, isovanillic acid, and vanillic acid. The gene of gcoAR, which encodes cytochrome P450, showed significant up-regulation when R. opacus PD630 grew on diverse aromatics. Deletion mutants of gcoAR and its partner protein gcoBR resulted in the strain losing the ability to grow on guaiacol, but no significant difference to the other aromatics. Only co-complementation alone of gcoAR and gcoBR restored the strain's ability to utilize guaiacol, demonstrating that both genes were equally important in the utilization of guaiacol. In vitro assays further revealed that GcoAR could convert guaiacol and anisole to catechol and phenol, respectively, with the production of formaldehyde as a by-product. The study provided robust evidence to reveal the molecular mechanism of R. opacus PD630 on guaiacol metabolism and offered a promising study model for dissecting the demethylation process of lignin-derived aromatics in microbes.IMPORTANCEAryl-O-demethylation is believed to be the key rate-limiting step in the catabolism of heterogeneous lignin-derived aromatics in both native and engineered microbes. However, the mechanisms of O-demethylation in lignin-derived aromatic catabolism remain unclear. Notably, guaiacol, the primary component unit of lignin, lacks in situ demonstration and illustration of the molecular mechanism of guaiacol O-demethylation in lignin-degrading bacteria. This is the first study to illustrate the mechanism of guaiacol metabolism by R. opacus PD630 in situ as well as characterize the purified key O-demethylase in vitro. This study provided further insight into the lignin metabolic pathway of R. opacus PD630 and could guide the design of an efficient biocatalytic system for lignin valorization.


Asunto(s)
Lignina , Rhodococcus , Lignina/metabolismo , Guayacol/metabolismo , Fenoles/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo
4.
Exp Neurol ; 369: 114533, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37666386

RESUMEN

Traumatic brain injury (TBI) leads to long-term impairments in motor and cognitive function. TBI initiates a secondary injury cascade including a neuro-inflammatory response that is detrimental to tissue repair and limits recovery. Anti-inflammatory corticosteroids such as dexamethasone can reduce the deleterious effects of secondary injury; but challenges associated with dosing, administration route, and side effects have hindered their clinical application. Previously, we developed a hydrolytically degradable hydrogel (PEG-bis-AA/HA-DXM) composed of poly (ethylene) glycol-bis-(acryloyloxy acetate) (PEG-bis-AA) and dexamethasone-conjugated hyaluronic acid (HA-DXM) for local and sustained dexamethasone delivery. In this study, we evaluated the effect of locally applied PEG-bis-AA/HA-DXM hydrogel on secondary injury and motor function recovery after moderate controlled cortical impact (CCI) TBI. Hydrogel treatment significantly improved motor function evaluated by beam walk and rotarod tests compared to untreated rats over 7 days post-injury (DPI). We also observed that the hydrogel treatment reduced lesion volume, inflammatory response, astrogliosis, apoptosis, and increased neuronal survival compared to untreated rats at 7 DPI. These results suggest that PEG-bis-AA/HA-DXM hydrogels can mitigate secondary injury and promote motor functional recovery following moderate TBI.

5.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373450

RESUMEN

Spikelet number per panicle (SNP) is one of the most important yield components in rice. Rice ENHANCING BIOMASS AND SPIKELET NUMBER (OsEBS), a gene involved in improved SNP and yield, has been cloned from an accession of Dongxiang wild rice. However, the mechanism of OsEBS increasing rice SNP is poorly understood. In this study, the RNA-Seq technology was used to analyze the transcriptome of wildtype Guichao 2 and OsEBS over-expression line B102 at the heading stage, and analysis of the evolution of OsEBS was also conducted. A total of 5369 differentially expressed genes (DEGs) were identified between Guichao2 and B102, most of which were down-regulated in B102. Analysis of the expression of endogenous hormone-related genes revealed that 63 auxin-related genes were significantly down-regulated in B102. Gene Ontogeny (GO) enrichment analysis showed that the 63 DEGs were mainly enriched in eight GO terms, including auxin-activated signaling pathway, auxin polar transport, auxin transport, basipetal auxin transport, and amino acid transmembrane transport, most of which were directly or indirectly related to polar auxin transport. Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis further verified that the down-regulated genes related to polar auxin transport had important effects on increased SNP. Analysis of the evolution of OsEBS found that OsEBS was involved in the differentiation of indica and japonica, and the differentiation of OsEBS supported the multi-origin model of rice domestication. Indica (XI) subspecies harbored higher nucleotide diversity than japonica (GJ) subspecies in the OsEBS region, and XI experienced strong balancing selection during evolution, while selection in GJ was neutral. The degree of genetic differentiation between GJ and Bas subspecies was the smallest, while it was the highest between GJ and Aus. Phylogenetic analysis of the Hsp70 family in O. sativa, Brachypodium distachyon, and Arabidopsis thaliana indicated that changes in the sequences of OsEBS were accelerated during evolution. Accelerated evolution and domain loss in OsEBS resulted in neofunctionalization. The results obtained from this study provide an important theoretical basis for high-yield rice breeding.


Asunto(s)
Oryza , RNA-Seq , Oryza/genética , Filogenia , Fitomejoramiento , Perfilación de la Expresión Génica , Transcriptoma
6.
Front Plant Sci ; 14: 1152196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035088

RESUMEN

Plant height and grain size are important agronomic traits affecting rice yield. Various plant hormones participate in the regulation of plant height and grain size in rice. However, how these hormones cooperate to regulate plant height and grain size is poorly understood. In this study, we identified a brassinosteroid-related gene, hfr131, from an introgression line constructed using Oryza longistaminata, that caused brassinosteroid insensitivity and reduced plant height and grain length in rice. Further study showed that hfr131 is a new allele of OsBRI1 with a single-nucleotide polymorphism (G to A) in the coding region, leading to a T988I conversion at a conserved site of the kinase domain. By combining yeast one-hybrid assays, chromatin immunoprecipitation-quantitative PCR and gene expression quantification, we demonstrated that OsARF17, an auxin response factor, could bind to the promoter region of HFR131 and positively regulated HFR131 expression, thereby regulating the plant height and grain length, and influencing brassinosteroid sensitivity. Haplotype analysis showed that the consociation of OsAFR17Hap1 /HFR131Hap6 conferred an increase in grain length. Overall, this study identified hfr131 as a new allele of OsBRI1 that regulates plant height and grain length in rice, revealed that brassinosteroid and auxin might coordinate through OsARF17-HFR131 interaction, and provided a potential breeding target for improvement of rice yield.

7.
J Integr Plant Biol ; 65(7): 1753-1766, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36939166

RESUMEN

Auxin is an important phytohormone in plants, and auxin signaling pathways in rice play key roles in regulating its growth, development, and productivity. To investigate how rice grain yield traits are regulated by auxin signaling pathways and to facilitate their application in rice improvement, we validated the functional relationships among regulatory genes such as OsIAA10, OsSK41, and OsARF21 that are involved in one of the auxin (OsIAA10) signaling pathways. We assessed the phenotypic effects of these genes on several grain yield traits across two environments using knockout and/or overexpression transgenic lines. Based on the results, we constructed a model that showed how grain yield traits were regulated by OsIAA10 and OsTIR1, OsAFB2, and OsSK41 and OsmiR393 in the OsSK41-OsIAA10-OsARF module and by OsARF21 in the transcriptional regulation of downstream auxin response genes in the OsSK41-OsIAA10-OsARF module. The population genomic analyses revealed rich genetic diversity and the presence of major functional alleles at most of these loci in rice populations. The strong differentiation of many major alleles between Xian/indica and Geng/japonica subspecies and/or among modern varieties and landraces suggested that they contributed to improved productivity during evolution and breeding. We identified several important aspects associated with the genetic and molecular bases of rice grain and yield traits that were regulated by auxin signaling pathways. We also suggested rice auxin response factor (OsARF) activators as candidate target genes for improving specific target traits by overexpression and/or editing subspecies-specific alleles and by searching and pyramiding the 'best' gene allelic combinations at multiple regulatory genes in auxin signaling pathways in rice breeding programs.


Asunto(s)
Oryza , Oryza/metabolismo , Fitomejoramiento , Fenotipo , Ácidos Indolacéticos/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo
8.
J Integr Plant Biol ; 65(7): 1782-1793, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36965127

RESUMEN

Amylose content (AC) is the main factor determining the palatability, viscosity, transparency, and digestibility of rice (Oryza sativa) grains. AC in rice grains is mainly controlled by different alleles of the Waxy (Wx) gene. The AP2/EREBP transcription factor OsEBP89 interacts with the MYC-like protein OsBP5 to synergistically regulate the expression of Wx. Here, we determined that the GLYCOGEN SYNTHASE KINASE 5 (OsGSK5, also named SHAGGY-like kinase 41 [OsSK41]) inhibits the transcriptional activation activity of OsEBP89 in rice grains during amylose biosynthesis. The loss of OsSK41 function enhanced Wx expression and increased AC in rice grains. By contrast, the loss of function of OsEBP89 reduced Wx expression and decreased AC in rice grains. OsSK41 interacts with OsEBP89 and phosphorylates four of its sites (Thr-28, Thr-30, Ser-238, and Thr-257), which makes OsEBP89 unstable and attenuates its interaction with OsBP5. Wx promoter activity was relatively weak when regulated by the phosphomimic variant OsEBP89E -OsBP5 but relatively strong when regulated by the nonphosphorylatable variant OsEBP89A -OsBP5. Therefore, OsSK41-mediated phosphorylation of OsEBP89 represents an additional layer of complexity in the regulation of amylose biosynthesis during rice grain development. In addition, our findings provide four possible sites for regulating rice grain AC via precise gene editing.


Asunto(s)
Endospermo , Oryza , Endospermo/metabolismo , Amilosa/metabolismo , Oryza/metabolismo , Regiones Promotoras Genéticas , Grano Comestible/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
J Fungi (Basel) ; 8(12)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36547636

RESUMEN

Renewable and biodegradable materials have attracted broad attention as alternatives to existing conventional plastics, which have caused serious environmental problems. Collagen is a potential material for developing versatile film due to its biosafety, renewability, and biodegradability. However, it is still critical to overcome the low mechanical, antibacterial and antioxidant properties of the collagen film for food packaging applications. To address these limitations, we developed a new technology to prepare composite film by using collagen and fungal-modified APL (alkali pretreatment liquor). In this study, five edible and medical fungi, Cunninghamella echinulata FR3, Pleurotus ostreatus BP3, Ganoderma lucidum EN2, Schizophyllum commune DS1 and Xylariaceae sp. XY were used to modify the APL, and that showed that the modified APL significantly improved the mechanical, antibacterial and antioxidant properties of APL/Collagen composite films. Particularly, the APL modified by BP3, EN2 and XY showed preferable performance in enhancing the properties of the composite films. The tensile strength of the film was increased by 1.5-fold in the presence of the APL modified by EN2. To further understand the effect of fungal-biomodified APL on the properties of the composite films, a correlation analysis between the components of APL and the properties of composite films was conducted and indicated that the content of aromatic functional groups and lignin had a positive correlation with the enhanced mechanical and antioxidant properties of the composite films. In summary, composite films prepared from collagen and fungal biomodified APL showed elevated mechanical, antibacterial and antioxidant properties, and the herein-reported novel technology prospectively possesses great potential application in the food packaging industry.

10.
Arch Biochem Biophys ; 731: 109447, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36283482

RESUMEN

Hydrogen peroxide (H2O2) is one of the major oxidative stress intracellularly and extracellularly, which may affect lipid membrane or cell membrane. However, the mechanism remains unclear. The present study investigated phospholipid and antioxidant responses of Cunninghamella echinulata under exogenous H2O2 stress by integrating lipidomics and transcriptomics. H2O2 significantly affected phospholipid profile of C. echinulata exposed to exogenous H2O2. The phospholipid content was reduced from 6.41% to 2.47% on the first day, and to 1.03% on the 7th day, which was 5-6 times lower than that in the control. Phosphatidyl choline was reduced significantly from 29.71% to 2.73% on the 7th day. The lipid-related metabolic maps of C. echinulata responding to H2O2 were constructed based on transcriptomics, lipidomics and biochemical analysis. Results showed that H2O2 almost mobilized all the signaling pathways in the cell, especially the AMPK and cAMP signaling pathway, which regulated the metabolism of proteins and fatty acids. H2O2-stress triggered the high expression of heat shock genes. The antioxidant enzymes were activated to supply more NADPH, which contributed to the modulation of intracellular redox balance, and continuously scavenged active substances, thus improving the mycelial resistance to oxidative stress.


Asunto(s)
Cunninghamella , Peróxido de Hidrógeno , Peróxido de Hidrógeno/metabolismo , Fosfolípidos/metabolismo , Antioxidantes/metabolismo , Cunninghamella/metabolismo , Estrés Oxidativo/fisiología
11.
Trends Biotechnol ; 40(12): 1469-1487, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36307230

RESUMEN

Lignin is the most abundant source of renewable aromatic biopolymers and its valorization presents significant value for biorefinery sustainability, which promotes the utilization of renewable resources. However, it is challenging to fully convert the structurally complex, heterogeneous, and recalcitrant lignin into high-value products. The in-depth research on the lignin degradation mechanism, microbial metabolic pathways, and rational design of new systems using synthetic biology have significantly accelerated the development of lignin valorization. This review summarizes the key enzymes involved in lignin depolymerization, the mechanisms of microbial lignin conversion, and the lignin valorization application with integrated systems and synthetic biology. Current challenges and future strategies to further study lignin biodegradation and the trends of lignin valorization are also discussed.


Asunto(s)
Lignina , Redes y Vías Metabólicas , Lignina/metabolismo
12.
Comput Math Methods Med ; 2022: 6440138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309831

RESUMEN

This study was aimed at exploring the effect of ultrasound image evaluation of comprehensive nursing scheme based on artificial intelligence algorithms on patients with diabetic kidney disease (DKD). 44 patients diagnosed with DKD were randomly divided into two groups: group A (no nursing intervention) and group B (comprehensive nursing). In the same period, 32 healthy volunteers were selected as the control group. Ultrasonographic images based on the K non-local-means (KNL-Means) filtering algorithm were used to perform imaging examinations in healthy people and DKD patients before and after care. The results suggested that compared with those of the SAE reconstruction algorithm and KAVD reconstruction algorithm, the PSNR value of artificial bee colony algorithm reconstruction of image was higher and the MSE value was lower. The resistant index (RI) of DKD patients in group B after nursing was 0.63 ± 0.06, apparently distinct from the RI of the healthy people (controls) in the same group (0.58 ± 0.06) and the RI of DKD patients in group A (0.68 ± 0.07) (P < 0.05). The incidence rate of complications in DKD patients in group B was apparently inferior to that in group A. After comprehensive nursing intervention (CNI), the scores of all dimensions of quality of life (QoL) in DKD patients in group B were obviously superior versus those in DKD patients in group A. It suggests that implementation of nursing intervention for DKD patients can effectively help patients improve and control the level of renal function, while ultrasound images based on intelligent algorithm can dynamically detect the changes in the level of renal function in patients, which has the value of clinical promotion.


Asunto(s)
Algoritmos , Inteligencia Artificial , Nefropatías Diabéticas/diagnóstico por imagen , Nefropatías Diabéticas/enfermería , Ultrasonografía/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Biología Computacional , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Riñón/irrigación sanguínea , Riñón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Proceso de Enfermería/estadística & datos numéricos , Calidad de Vida , Circulación Renal , Ultrasonografía Doppler en Color/estadística & datos numéricos
13.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055011

RESUMEN

Developing methods for increasing the biomass and improving the plant architecture is important for crop improvement. We herein describe a gene belonging to the RING_Ubox (RING (Really Interesting New Gene) finger domain and U-box domain) superfamily, PLANT ARCHITECTURE and GRAIN NUMBER 1 (PAGN1), which regulates the number of grains per panicle, the plant height, and the number of tillers. We used the CRISPR/Cas9 system to introduce loss-of-function mutations to OsPAGN1. Compared with the control plants, the resulting pagn1 mutant plants had a higher grain yield because of increases in the plant height and in the number of tillers and grains per panicle. Thus, OsPAGN1 may be useful for the genetic improvement of plant architecture and yield. An examination of evolutionary relationships revealed that OsPAGN1 is highly conserved in rice. We demonstrated that OsPAGN1 can interact directly with OsCNR10 (CELL NUMBER REGULATOR10), which negatively regulates the number of rice grains per panicle. A transcriptome analysis indicated that silencing OsPAGN1 affects the levels of active cytokinins in rice. Therefore, our findings have clarified the OsPAGN1 functions related to rice growth and grain development.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas , Oryza/anatomía & histología , Oryza/fisiología , Proteínas de Plantas/genética , Dedos de Zinc/genética , Técnica del Anticuerpo Fluorescente , Técnicas de Inactivación de Genes , Oryza/citología , Desarrollo de la Planta , Proteínas de Plantas/química , Estructuras de las Plantas , Plantas Modificadas Genéticamente , Carácter Cuantitativo Heredable
14.
J Agric Food Chem ; 69(43): 12880-12890, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34634902

RESUMEN

Lignin-carbohydrate complexes (LCCs) have recently emerged as natural products with pharmaceutical and nutraceutical potential. Here, we compared the structure of LCCs from ginkgo (GK, gymnosperms), wheat straw (WST, monocotyledons), and aspen white poplar (AW, dicotyledons). We also investigated the biotransformation of LCCs by intestinal microbiota in vitro. We found that human intestinal microbiota could use LCCs as a carbon source for growth, breaking resistant cross-linkages in LCCs to generate a plethora of short-chain fatty acids (SCFAs) and aromatic compounds with putative beneficial effects on human health. The yield of SCFAs reached 1837.8 ± 44.1 µmol/g using AW LCCs as a carbon source. The biomass of intestinal microbiota increased the fastest using GK LCCs. The greatest amounts of phenolics were present at 4 h in a WST LCCs fermentation system. Many phenolic acids with potential bioactivity were obtained after 24 h fermentation using each LCCs, such as ferulic acid.


Asunto(s)
Microbioma Gastrointestinal , Lignina , Biotransformación , Carbohidratos , Ácidos Grasos Volátiles , Humanos , Lignina/metabolismo
15.
Environ Microbiol ; 23(8): 4547-4560, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34169632

RESUMEN

Overcoming lignocellulosic biomass recalcitrance, especially the cleavage of cross-linkages in lignin-carbohydrate complexes (LCCs) and lignin, is essential for both the carbon cycle and industrial biorefinery. Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in fungal polysaccharide oxidative degradation. Nevertheless, comprehensive analysis showed that LPMOs from a white-rot fungus, Pleurotus ostreatus, correlated well with the Fenton reaction and were involved in the degradation of recalcitrant nonpolysaccharide fractions in this research. Thus, LPMOs participated in the extracellular Fenton reaction by enhancing iron reduction in quinone redox cycling. A Fenton reaction system consisting of LPMOs, hydroquinone, and ferric iron can efficiently produce hydroxy radicals and then cleave LCCs or lignin linkages. This finding indicates that LPMOs are underestimated auxiliary enzymes in eliminating biomass recalcitrance.


Asunto(s)
Lignina , Pleurotus , Lignina/metabolismo , Oxigenasas de Función Mixta/metabolismo , Estrés Oxidativo , Pleurotus/metabolismo , Polisacáridos
16.
Appl Environ Microbiol ; 87(13): e0053321, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33893114

RESUMEN

To systemically understand the biosynthetic pathways of bioactive substances, including triterpenoids and polysaccharides, in Ganoderma lucidum, the correlation between substrate degradation and carbohydrate and triterpenoid metabolism during growth was analyzed by combining changes in metabolite content and changes in related enzyme expression in G. lucidum over 5 growth phases. Changes in low-polarity triterpenoid content were correlated with changes in glucose and mannitol contents in fruiting bodies. Additionally, changes in medium-polarity triterpenoid content were correlated with changes in the lignocellulose content of the substrate and with the glucose, trehalose, and mannitol contents of fruiting bodies. Weighted gene coexpression network analysis (WGCNA) indicated that changes in trehalose and polyol contents were related to carbohydrate catabolism and polysaccharide synthesis. Changes in triterpenoid content were related to expression of the carbohydrate catabolic enzymes laccase, cellulase, hemicellulase, and polysaccharide synthase and to the expression of several cytochrome P450 monooxygenases (CYPs). It was concluded that the products of cellulose and hemicellulose degradation participate in polyol, trehalose, and polysaccharide synthesis during initial fruiting body formation. These carbohydrates accumulate in the early phase of fruiting body formation and are utilized when the fruiting bodies mature and a large number of spores are ejected. An increase in carbohydrate metabolism provides additional precursors for the synthesis of triterpenoids. IMPORTANCE Most studies of G. lucidum have focused on its medicinal function and on the mechanism of its activity, whereas the physiological metabolism and synthesis of bioactive substances during the growth of this species have been less studied. Therefore, theoretical guidance for cultivation methods to increase the production of bioactive compounds remains lacking. This study integrated changes in the lignocellulose, carbohydrate, and triterpenoid contents of G. lucidum with enzyme expression from transcriptomics data using WGCNA. The findings helped us better understand the connections between substrate utilization and the synthesis of polysaccharides and triterpenoids during the cultivation cycle of G. lucidum. The results of WGCNA suggest that the synthesis of triterpenoids can be enhanced not only through regulating the expression of enzymes in the triterpenoid pathway, but also through regulating carbohydrate metabolism and substrate degradation. This study provides a potential approach and identifies enzymes that can be targeted to regulate lignocellulose degradation and accelerate the accumulation of bioactive substances by regulating substrate degradation in G. lucidum.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Lignina/metabolismo , Reishi , Triterpenos/metabolismo , Cuerpos Fructíferos de los Hongos/metabolismo , Regulación Fúngica de la Expresión Génica , Reishi/genética , Reishi/crecimiento & desarrollo , Reishi/metabolismo , Transcriptoma
17.
Carbohydr Polym ; 253: 117241, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33278997

RESUMEN

Konjac glucomannan (KGM) hydrolysate is a potentially valuable prebiotic that could improve gastrointestinal health by modulating the growth of probiotic bacteria and by promoting the production of short-chain fatty acids (SCFAs). In this study, we used lytic polysaccharide monooxygenases (LPMOs) to produce oligosaccharides from KGM and studied their prebiotic functions. The LPMO from Pleurotus ostreatus (PoLPMO9D) was shown to efficiently depolymerize KGM and produce a broad range of small oligomers. PoLPMO9D showed maximal activities at 50-60 °C and pH 4.0. When KGM-depolymerizing products produced by PoLPMO9D were employed as the carbon source instead of untreated KGM polymers, the growth of faecal microbiota was 2.76 times higher, a significant increase in the genus Lactococcus was observed, and the production of SCFAs increased by 14.6-fold with a significant pH decrease. This study shows that LPMOs may be a promising alternative enzyme for depolymerizing polysaccharide to prepare prebiotics from KGM.


Asunto(s)
Proteínas Fúngicas/farmacología , Mananos/química , Oxigenasas de Función Mixta/farmacología , Oligosacáridos/síntesis química , Prebióticos/análisis , Adulto , Ácidos Grasos Volátiles/biosíntesis , Heces/microbiología , Fermentación , Proteínas Fúngicas/química , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Voluntarios Sanos , Calor , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis/efectos de los fármacos , Masculino , Oxigenasas de Función Mixta/química , Pleurotus/enzimología , Polimerizacion/efectos de los fármacos , Viscosidad , Adulto Joven
18.
Cells ; 9(12)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255239

RESUMEN

Adrenomedullin (ADM) is a vasodilator that causes natriuresis and diuresis. However, the direct effect of ADM on osmotic water permeability in the rat inner medullary collecting duct (IMCD) has not been tested. We investigated whether ADM and its ADM receptor components (CRLR, RAMP2, and 3) are expressed in rat inner medulla (IM) and whether ADM regulates osmotic water permeability in isolated perfused rat IMCDs. The mRNAs of ADM, CRLR, and RAMP2 and 3 were detected in rat IM. Abundant protein of CRLR and RAMP3 were also seen but RAMP2 protein level was extremely low. Adding ADM (100 nM) to the bath significantly decreased osmotic water permeability. ADM significantly decreased aquaporin-2 (AQP2) phosphorylation at Serine 256 (pS256) and increased it at Serine 261 (pS261). ADM significantly increased cAMP levels in IM. However, inhibition of cAMP by SQ22536 further decreased ADM-attenuated osmotic water permeability. Stimulation of cAMP by roflumilast increased ADM-attenuated osmotic water permeability. Previous studies show that ADM also stimulates phospholipase C (PLC) pathways including protein kinase C (PKC) and cGMP. We tested whether PLC pathways regulate ADM-attenuated osmotic water permeability. Blockade of either PLC by U73122 or PKC by rottlerin significantly augmented the ADM-attenuated osmotic water permeability and promoted pS256-AQP2 but did change pS261-AQP2. Inhibition of cGMP by L-NAME did not change AQP2 phosphorylation. In conclusion, ADM primarily binds to the CRLR-RAMP3 receptor to initiate signaling pathways in the IM. ADM reduced water reabsorption through a PLC-pathway involving PKC. ADM-attenuated water reabsorption may be related to decreased trafficking of AQP2 to the plasma membrane. cAMP is not involved in ADM-attenuated osmotic water permeability.


Asunto(s)
Adrenomedulina/farmacología , Médula Renal/efectos de los fármacos , Ósmosis/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Agua/metabolismo , Aminopiridinas/farmacología , Animales , Acuaporina 2/metabolismo , Benzamidas/farmacología , Membrana Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Ciclopropanos/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , ARN Mensajero/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
19.
Ecotoxicol Environ Saf ; 205: 111134, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32829208

RESUMEN

The recalcitrant azo dyes combined with heavy metals constitute a major challenge for the bioremediation of industrial effluents. This study aimed to investigate the effect and mechanism of action of a white-rot fungus Trametes hirsuta TH315 on the simultaneous removal of hexavalent chromium [Cr(VI)] and azo dye (Reactive Black 5, RB5). Here, this study discovered that toxic Cr(VI) (1 mM) greatly promoted RB5 decolorization (from 57.15% to 83.65%) by white-rot fungus Trametes hirsuta with high Cr(VI)-reducing ability (>96%), resulting in the simultaneous removal of co-contaminants. On the basis of transcriptomic and biochemical analysis, our study revealed that the oxidative stress in co-contaminants mainly caused by Cr(VI), and a number of dehydrogenases and oxidases showed up-regulation in response to Cr(VI) stress. It was noteworthy that the oxidative stress caused by Cr(VI) in co-contaminants can both significantly induce glutathione S-transferase and laccase expression. Glutathione S-transferase potentially involved in antioxidation against Cr(VI) stress. Laccase was found to play a key role in RB5 decolorization by T. hirsuta. These results suggested that the simultaneous removal of co-contaminants by T. hirsuta could be achieved with Cr(VI) exposure. Overall, the elucidation of the molecular basis in details will help to advance the general knowledge about the fungus by facing harsh environments, and put forward a further possible application of fungi on environmental remediation.


Asunto(s)
Biodegradación Ambiental , Cromo/toxicidad , Naftalenosulfonatos/química , Trametes/fisiología , Compuestos Azo/análisis , Restauración y Remediación Ambiental , Lacasa/metabolismo , Metales Pesados/análisis , Trametes/metabolismo
20.
Cells ; 9(4)2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295252

RESUMEN

Aldosterone indirectly regulates water reabsorption in the distal tubule by regulating sodium reabsorption. However, the direct effect of aldosterone on vasopressin-regulated water and urea permeability in the rat inner medullary collecting duct (IMCD) has not been tested. We investigated whether aldosterone regulates osmotic water permeability in isolated perfused rat IMCDs. Adding aldosterone (500 nM) to the bath significantly decreased osmotic water permeability in the presence of vasopressin (50 pM) in both male and female rat IMCDs. Aldosterone significantly decreased aquaporin-2 (AQP2) phosphorylation at S256 but did not change it at S261. Previous studies show that aldosterone can act both genomically and non-genomically. We tested the mechanism by which aldosterone attenuates osmotic water permeability. Blockade of gene transcription with actinomycin D did not reverse aldosterone-attenuated osmotic water permeability. In addition to AQP2, the urea transporter UT-A1 contributes to vasopressin-regulated urine concentrating ability. We tested aldosterone-regulated urea permeability in vasopressin-treated IMCDs. Blockade of gene transcription did not reverse aldosterone-attenuated urea permeability. In conclusion, aldosterone directly regulates water reabsorption through a non-genomic mechanism. Aldosterone-attenuated water reabsorption may be related to decreased trafficking of AQP2 to the plasma membrane. There may be a sex difference apparent in the inhibitory effect of aldosterone on water reabsorption in the inner medullary collecting duct. This study is the first to show a direct effect of aldosterone to inhibit vasopressin-stimulated osmotic water permeability and urea permeability in perfused rat IMCDs.


Asunto(s)
Aldosterona/uso terapéutico , Transporte Biológico/fisiología , Médula Renal/efectos de los fármacos , Túbulos Renales Colectores/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Vasopresinas/efectos adversos , Aldosterona/farmacología , Animales , Células Cultivadas , Femenino , Masculino , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...