Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(4): 109, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564014

RESUMEN

KEY MESSAGE: The regulatory action of BXs secreted by wheat on the pathogenicity of FOF causing Fusarium wilt in faba bean were analyzed. DIMBOA and MBOA weakened the pathogenicity of FOF. A large number of pathogenic bacteria in continuous cropping soil infect faba bean plants, leading to the occurrence of wilt disease, which restricts their production. Faba bean-wheat intercropping is often used to alleviate this disease. This study investigates the effect of benzoxazinoids (BXs) secreted by wheat root on the pathogenicity of Fusarium oxysporum f. sp. Fabae (FOF) and underlying molecular mechanisms. The effects of DIMBOA(2,4-dihydroxy-7-methoxy-1,4-benzoxazine-4-one) and MBOA(6-methoxybenzoxazolin-2-one) on the activity of cell-wall-degrading enzymes in FOF(cellulase, pectinase, amylase, and protease), FOF Toxin (fusaric acid, FA) content were investigated through indoor culture experiments. The effect of BXs on the metabolic level of FOF was analyzed by metabonomics to explore the ecological function of benzoxazines intercropping control of Fusarium wilt in faba bean. The results show that the Exogenous addition of DIMBOA and MBOA decreased the activity of plant-cell-wall-degrading enzymes and fusaric acid content and significantly weakened the pathogenicity of FOF. DIMBOA and MBOA significantly inhibited the pathogenicity of FOF, and metabolome analysis showed that DIMBOA and MBOA reduced the pathogenicity of FOF by down-regulating related pathways such as nucleotide metabolism and linoleic acid metabolism, thus effectively controlling the occurrence of Fusarium wilt in faba bean.


Asunto(s)
Benzoxazinas , Fusarium , Triticum , Benzoxazinas/farmacología , Ácido Linoleico , Virulencia , Ácido Fusárico , Nucleótidos
2.
Plant Mol Biol ; 114(3): 42, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630198

RESUMEN

Continuous cropping of faba bean (Vicia faba L.) has led to a high incidence of wilt disease. The implementation of an intercropping system involving wheat and faba bean can effectively control the propagation of faba bean wilt disease. To investigate the mechanisms of wheat in mitigating faba bean wilt disease in a wheat-faba bean intercropping system. A comprehensive investigation was conducted to assess the temporal variations in Fusarium oxysporum f. sp. fabae (FOF) on the chemotaxis of benzoxazinoids (BXs) and wheat root through indoor culture tests. The effects of BXs on FOF mycelial growth, spore germination, spore production, and electrical conductivity were examined. The influence of BXs on the ultrastructure of FOF was investigated through transmission electron microscopy. Eukaryotic mRNA sequencing was utilized to analyze the differentially expressed genes in FOF upon treatment with BXs. FOF exhibited a significant positive chemotactic effect on BXs in wheat roots and root secretions. BXs possessed the potential to exert significant allelopathic effects on the mycelial growth, spore germination, and sporulation of FOF. In addition, BXs demonstrated a remarkable ability to disrupt the structural integrity and stability of the membrane and cell wall of the FOF mycelia. BXs possessed the capability of posing threats to the integrity and stability of the cell membrane and cell wall. This ultimately resulted in physiological dysfunction, effectively inhibiting the regular growth and developmental processes of the FOF.


Asunto(s)
Benzoxazinas , Fusarium , Vicia faba , Pared Celular , Triticum , Crecimiento y Desarrollo
3.
ACS Synth Biol ; 13(4): 1259-1272, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38513222

RESUMEN

We present the newly isolated Streptomyces sungeiensis SD3 strain as a promising microbial chassis for heterologous production of secondary metabolites. S. sungeiensis SD3 exhibits several advantageous traits as a microbial chassis, including genetic tractability, rapid growth, susceptibility to antibiotics, and metabolic capability supporting secondary metabolism. Genomic and transcriptomic sequencing unveiled the primary metabolic capabilities and secondary biosynthetic pathways of S. sungeiensis SD3, including a previously unknown pathway responsible for the biosynthesis of streptazone B1. The unique placement of S. sungeiensis SD3 in the phylogenetic tree designates it as a type strain, setting it apart from other frequently employed Streptomyces chassis. This distinction makes it the preferred chassis for expressing biosynthetic gene clusters (BGCs) derived from strains within the same phylogenetic or neighboring phylogenetic clade. The successful expression of secondary biosynthetic pathways from a closely related yet slow-growing strain underscores the utility of S. sungeiensis SD3 as a heterologous expression chassis. Validation of CRISPR/Cas9-assisted genetic tools for chromosomal deletion and insertion paved the way for further strain improvement and BGC refactoring through rational genome editing. The addition of S. sungeiensis SD3 to the heterologous chassis toolkit will facilitate the discovery and production of secondary metabolites.


Asunto(s)
Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Filogenia , Antibacterianos/metabolismo , Genómica , Metabolismo Secundario/genética , Familia de Multigenes
4.
Chembiochem ; 25(1): e202300590, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37908177

RESUMEN

Octacosamicin A is an antifungal metabolite featuring a linear polyene-polyol chain flanked by N-hydroxyguanidine and glycine moieties. We report here that sub-inhibitory concentrations of streptomycin elicited the production of octacosamicin A in Amycolatopsis azurea DSM 43854T . We identified the biosynthetic gene cluster (oca BGC) that encodes a modular polyketide synthase (PKS) system for assembling the polyene-polyol chain of octacosamicin A. Our analysis suggested that the N-hydroxyguanidine unit originates from a 4-guanidinobutyryl-CoA starter unit, while the PKS incorporates an α-hydroxyketone moiety using a (2R)-hydroxymalonyl-CoA extender unit. The modular PKS system contains a non-canonical terminal module that lacks thioesterase (TE) and acyl carrier protein (ACP) domains, indicating the biosynthesis is likely to employ an unconventional and cryptic off-loading mechanism that attaches glycine to the polyene-polyol chain via an intermolecular amidation reaction.


Asunto(s)
Glicina , Sintasas Poliquetidas , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Polienos
5.
Carbohydr Polym ; 326: 121580, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142066

RESUMEN

Developing naturally-derived wound dressing materials with intrinsic therapeutic effects is desirable for the clinical applications. Recently, guanosine-based supramolecular G-quadruplex (G4) hydrogel exhibited great potential in preparing biological materials due to its simple fabrication method and responsive gel networks. However, the weak mechanical properties and the consequent burst release of bioactive molecules restrict its clinical applications. Herein, we found that konjac glucomannan (KGM) with immunoregulatory effect did not affect the self-assembly of G-quadruplexes and thus effectively enhancing the mechanical properties of G4 hydrogel. Aloin, as a model drug, was in situ loaded into gel networks, finally obtaining the G4/Aloin-KGM hydrogel. This hydrogel exhibited porous morphology, swelling ability and hemostatic capability. Boronate bonds in G4 networks and aloin collectively endowed the hydrogel with excellent antioxidant performance. Meanwhile, aloin also provided outstanding in vitro and in vivo bactericidal ability. The wounds treated with this biocompatible hydrogel demonstrated faster regeneration of epithelial and dermal tissues, and the whole wound healing stages were accelerated by promoting collagen deposition, facilitating macrophage polarization towards M2 phenotype, down-regulating the expression level of IL-6, and up-regulating the expression level of IL-10, CD31 and α-SMA.


Asunto(s)
Hidrogeles , Traumatismos de los Tejidos Blandos , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Cicatrización de Heridas , Antioxidantes/farmacología , Antibacterianos/farmacología , Antibacterianos/química
6.
ACS Nano ; 17(21): 21394-21410, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37870500

RESUMEN

Immunotherapy is an effective adjunct to surgery for preventing tumor recurrence and metastasis in postoperative tumor patients. Although mimicking microbial invasion and immune activation pathways can effectively stimulate the immune system, the limited capacity of microbial components to bind antigens and adjuvants restricts the development of this system. Here, we construct bionic yeast carriers (BYCs) by in situ polymerization of mesoporous silica nanoparticles (MSNs) within the yeast capsules (YCs). BYCs can mimic the yeast infection pathway while utilizing the loading capacity of MSNs for multiple substances. Pore size and hydrophobicity-modified BYC can be loaded with both antigen and adjuvant R848. Oral or subcutaneous injection uptake of coloaded BYCs demonstrated positive therapeutic effects as a tumor therapeutic vaccine in both the transplantation tumor model and the metastasis tumor model. 57% of initial 400 mm3 tumor recurrence models are completely cured with coloaded BYCs via combination therapy with surgery, utilizing surgically resected tumors as antigens. The BYCs construction and coloading strategy will provide insights and optimistic approaches for the development of effective and controllable cancer vaccine carriers.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Humanos , Saccharomyces cerevisiae , Biónica , Recurrencia Local de Neoplasia/prevención & control , Adyuvantes Inmunológicos , Antígenos , Dióxido de Silicio , Porosidad , Portadores de Fármacos
7.
Int J Biol Macromol ; 253(Pt 3): 126848, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37699465

RESUMEN

Skin wound management faces significant clinical challenges, including continuous bacterial infection and inflammation. Therefore, developing removable hydrogel dressings with intrinsic multifunctional properties is highly desirable. In this study, a body temperature-induced adhesive and removable hydrogel was designed to treat skin defect wounds. The HA/Gel-R-Ag hybrid gel was prepared by incorporating a silver ion-crosslinked sulfhydryl hyaluronate/gelatin-based polymeric gel network into a supramolecular rhein gel network, thereby significantly enhancing its mechanical properties. Temperature-responsive gelatin chains give the hybrid gel reversible tissue adhesiveness and detachment, thus avoiding secondary injury to wounds when changing the hydrogels. The hybrid gel exhibited excellent bactericidal ability owing to the antibacterial capacity of the silver ions and rhein. Moreover, both HA and rhein endowed the hybrid gel with immunoregulatory effects by promoting macrophage polarization from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype. In a full-thickness skin defect mouse mode, this porous, degradable, and biocompatible HA/Gel-R-Ag hybrid gel boosted skin regeneration by inhibiting inflammation and promoting collagen deposition and angiogenesis. It is thus a simple method for widening the application range of mechanically weak rhein gels and providing a promising wound dressing material with multiple intrinsic functions for treating skin wounds.


Asunto(s)
Gelatina , Hidrogeles , Animales , Ratones , Hidrogeles/farmacología , Gelatina/farmacología , Adhesivos , Temperatura Corporal , Plata , Vendajes , Antibacterianos , Inflamación
8.
Int J Biol Macromol ; 248: 125793, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442505

RESUMEN

Designing wound dressings with inherent multifunctional therapeutic effects is desirable for clinical applications. Herein, a series of multifunctional carboxymethyl chitosan (CMCS)-based hydrogels were fabricated by the facile urate oxidase (UOX)-horseradish peroxidase (HRP) cascade enzymatic crosslinking system. For the first time, the cascade enzymatic crosslinking system was not only used for preparing hydrogel wound dressings but also for accelerating wound healing due to the activity retention of the self-compartmental enzymes. A CMCS derivative (HCMCS-mF) synthesized by successively grafting 4-hydroxybenzaldehyde (H) and 5-methylfurfural (mF) on CMCS and a quaternary ammonium crosslinker (QMal) with terminal grafting maleimide (Mal) groups were combined with enzymatic system for the facile preparation of hydrogels. The mild Diels-Alder (DA) crosslinking reaction between mF and Mal groups constructed the first network of hydrogels. The cascade UOX-HRP system mediated the oxidative crosslinking of phenols thus forming the second gel network. Self-entrapped UOX maintained its enzymatic activity and could continuously catalyze the oxidation of uric acid, generating therapeutic allantoin. These porous, degradable, mechanically stable hydrogels with excellent antioxidant performance and enhanced antibacterial capacity could effectively accelerate skin wound repair by simultaneously reducing oxidative stress, relieving inflammation, promoting collagen deposition and upregulating the expression level of CD31.


Asunto(s)
Quitosano , Hidrogeles , Cicatrización de Heridas , Piel , Materiales Biocompatibles , Antibacterianos/farmacología , Peroxidasa de Rábano Silvestre
9.
J Nat Prod ; 86(5): 1251-1260, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37196240

RESUMEN

Seven [4 + 2]-type triterpene-diterpene hybrids derived from a rearranged or a normal lanostane unit (dienophile) and an abietane moiety (diene), forrestiacids E-K (1-7, respectively), were further isolated and characterized from Pseudotsuga forrestii (a vulnerable conifer endemic to China). The intriguing molecules were revealed with the guidance of an LC-MS/MS-based molecular ion networking strategy combined with conventional phytochemical procedures. Their chemical structures with absolute configurations were established by spectroscopic data, chemical transformation, electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. They all contain a rare bicyclo[2.2.2]octene motif. Both forrestiacids J (6) and K (7) represent the first examples of this unique class of [4 + 2]-type hybrids that arose from a normal lanostane-type dienophile. Some isolates remarkably inhibited ATP-citrate lyase (ACL), with IC50 values ranging from 1.8 to 11 µM. Docking studies corroborated the findings by highlighting the interactions between the bioactive compounds and the ACL enzyme (binding affinities: -9.9 to -10.7 kcal/mol). The above findings reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.


Asunto(s)
Diterpenos , Pseudotsuga , Tracheophyta , Triterpenos , Triterpenos/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Diterpenos/química , Estructura Molecular
10.
Phytochemistry ; 211: 113687, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37105348

RESUMEN

Four undescribed palmarumycin-type spirodioxynaphthalenes (phyligustricins A-D) and a known biogenetic precursor (palmarumycin BG1) were isolated from a solid fermentation of Phyllosticta ligustricola HDF-L-2, an endophyte associated with the endangered Chinese conifer Pseudotsuga gaussenii. The structures were elucidated by spectroscopic methods, single-crystal X-ray diffraction analyses, and electronic circular dichroism calculations. Both phyligustricins A and B have an unprecedented spirodioxynaphthalene-derived skeleton containing an extra 4H-furo [3,2-c]pyran-4-one moiety, while phyligustricins C and D are p-hydroxy-phenethyl substituted spirodioxynaphthalenes. The plausible biosynthetic relationships of the isolates were briefly proposed. Phyligustricins C and D and palmarumycin BG1 showed considerable antibacterial activity against Staphylococcus aureus, each with an MIC value of 16 µg/mL. Palmarumycin BG1 displayed significant inhibitory effects against ACL and ACC1, with IC50 values of 1.60 and 8.00 µM, respectively.


Asunto(s)
Ascomicetos , Pseudotsuga , Ascomicetos/química , Antibacterianos/farmacología , Antibacterianos/química
11.
J Sci Food Agric ; 103(9): 4489-4502, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36856259

RESUMEN

BACKGROUND: The relationship between the microclimate of the intercropping faba bean canopy and yield, and its response to nitrogen application, was studied in the crop canopy to clarify that intercropping and nitrogen application changed the microclimate of the faba bean canopy and affected the yield. RESULTS: In field experiments in Eshan and Xundian, the growth index, light transmittance, interception rate of photosynthetic effective radiation, temperature, relative humidity, and yield of the faba bean were determined using three planting methods (wheat monoculture, faba bean monoculture, and wheat-faba bean intercropping) and four nitrogen application levels, N0 (0 kg/hm2 ), N1 (45 kg/hm2 ), N2 (90 kg/hm2 ), and N3 (180 kg/hm2 ). The results showed that the application of nitrogen improved the growth index of monoculture and intercropping broad beans significantly, reduced the canopy light transmittance and temperature significantly, and increased the interception rate and relative humidity of photosynthetic effective radiation significantly. Compared with N0, the yield of broad bean in both places was the highest in N1, which increased by 14% (Eshan) and 15% (Xundian). CONCLUSION: Multiple linear stepwise regression and path analysis showed that the decrease in canopy light transmittance during the faba bean pod-setting stage and the interception rate of photosynthetic effective radiation during pod-bulging stage, caused by excessive nitrogen application, were the main climatic and ecological factors limiting the increase in the intercropping faba bean yield in Eshan and Xundian respectively. The optimum nitrogen application rate recommended in production is 45 kg/hm2 , to reduce the nitrogen application rate and maximize the productivity of the wheat and faba bean system. © 2023 Society of Chemical Industry.


Asunto(s)
Fabaceae , Vicia faba , Nitrógeno , Microclima , Triticum
12.
J Ethnopharmacol ; 306: 116177, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36681167

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Euphorbia humifusa Willd., known as Di-Jin-Cao in Chinese, has long been utilized as a traditional herb for the treatment of furuncles and carbuncles mainly caused by Staphylococcus aureus infection. Despite extensive chemical and pharmacological studies reported previously for E. humifusa, the antibacterial and antibiofilm activities against S. aureus as well as the related mechanism of action (MoA) remain largely obscure. AIM OF THE STUDY: To investigate the antibacterial and antibiofilm activities of the preferred fractions and compounds from E. humifusa against S. aureus and assess the associated MoA. MATERIALS AND METHODS: The bioactive fractions and compounds were obtained from the 75% ethanol extract of E. humifusa (75%-EEEH) with the assistance of the related antibacterial and antibiofilm screening. Their antibacterial activities were determined using the broth microdilution method, whilst the inhibition of biofilm formation and the disruption of preformed biofilm were assessed by crystal violet staining and confocal laser scanning microscopy (CLSM). To achieve more effective therapies, the combinatory effects of different components were also studied. The biofilm metabolic activities of isolated compounds were evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay. The scanning electron microscopy (SEM) and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to explore the antibiofilm mechanism. RESULTS: Fractions DJC06 and DJC07 collected from the ethyl acetate extract of the 75%-EEEH exhibited antibacterial activity (MIC = 256 µg/mL) against S. aureus and further separation of these two fractions led to the isolation and characterization of 22 compounds. Among the isolates, luteolin (LU), quercetin (QU), and kaempferol (KA) are the verified components associated with the antibacterial and antibiofilm activities by displaying individual or combinational MIC values of 8-128 µg/mL and 70.9-99.7% inhibition for biofilm formation. Importantly, QU and KA can work in synergy with LU to significantly enhance the efficacy via destroying cell integrity, increasing membrane permeability, and down-regulating the biofilm-related gene expression. CONCLUSIONS: The preferred fractions and compounds from E. humifusa exerted desired antibacterial and antibiofilm efficacy against S. aureus via a MoA involving cell morphology disruption and altered genes expression. The findings herein not only support its traditional use in the treatment of furuncles and carbuncles, but reveal E. humifusa is a potential source for producing promising antibiofilm alternatives against S. aureus and highlight the isolated components (LU, QU, KA) that can potentiate the efficacy when used in synergy.


Asunto(s)
Ántrax , Euphorbia , Forunculosis , Infecciones Estafilocócicas , Animales , Staphylococcus aureus , Antibacterianos/farmacología , Infecciones Estafilocócicas/microbiología , Biopelículas , Pruebas de Sensibilidad Microbiana
13.
Carbohydr Polym ; 303: 120469, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657865

RESUMEN

Bacterial infection, oxidative stress and inflammation are the main obstacles in wound healing. Hydrogels with moist and inherent properties are beneficial to wound healing. Here, we fabricated a honokiol-laden micelle-crosslinked hyaluronate-based hydrogel by simply mixing honokiol-laden PF127-CHO micelles, 3,3'-dithiobis(propionohydrazide) grafted hyaluronic acid and silver ions. PF127 could not only effectively load hydrophobic small molecules but also be macromolecular crosslinker for preparing hydrogels. Hyaluronic acid plays an essential role in wound healing processes including regulating macrophage polarization towards M2 phenotype. The chemical dynamic acylhydrazone crosslinking and physical crosslinking among PF127-CHO micelles constructed hydrogel's networks, which endowed hydrogel with excellent self-healing properties. PF-HA-3 hydrogel also exhibited outstanding antioxidant and antibacterial capabilities. In a full-thickness skin defect model, this degradable and biocompatible hydrogel could promote wound healing by remodeling wound tissues, regulating M2 polarization and angiogenesis. In summary, this inherent multifunctional hydrogel will provide a promising strategy for designing bioactive compounds-based wound dressings.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Hidrogeles/farmacología , Hidrogeles/química , Ácido Hialurónico/farmacología , Ácido Hialurónico/química , Micelas , Cicatrización de Heridas , Macrófagos , Antibacterianos/química
14.
Int J Biol Macromol ; 228: 99-110, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36565830

RESUMEN

The design and facile preparation of the smart hydrogel wound dressings with inherent excellent antioxidant and antibacterial capacity to effectively promote wound healing processes is highly desirable in clinical applications. Herein, a series of multifunctional hydrogels were prepared by the dynamic Schiff base and boronate ester crosslinking among phenylboronic acid (PBA) grafted carboxymethyl chitosan (CMCS), polyphenols and Cu2+-crosslinked polyphenol nanoparticles (CuNPs). The dynamic crosslinking bonds endowed hydrogels with excellent self-healing and degradable properties. Three polyphenols including tannic acid (TA), oligomeric proanthocyanidins (OPC) and (-)-epigallocatechin-3-O-gallate (EGCG) contributed to the outstanding antibacterial and antioxidant abilities of these hydrogels. The tissue adhesive capacity of hydrogels gave them good hemostatic effect. Through a full-thickness skin defect model of mice, these biocompatible hydrogels could accelerate wound healing processes by promoting granulation tissue formation, collagen deposition, M2 macrophage polarization and cytokine secretion, demonstrating that these natural-derived hydrogels with inherent physiological properties and low-cost preparation approaches could be promising dressing materials.


Asunto(s)
Quitosano , Ratones , Animales , Quitosano/química , Hidrogeles/farmacología , Hidrogeles/química , Cicatrización de Heridas/fisiología , Antioxidantes/farmacología , Antioxidantes/química , Polifenoles/farmacología , Antibacterianos/farmacología , Antibacterianos/química
15.
Appl Environ Microbiol ; 88(23): e0120822, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36350133

RESUMEN

Angucyclines are a family of structurally diverse, aromatic polyketides with some members that exhibit potent bioactivity. Angucyclines have also attracted considerable attention due to the intriguing biosynthetic origins that underlie their structural complexity and diversity. Balmoralmycin (compound 1) represents a unique group of angucyclines that contain an angular benz[α]anthracene tetracyclic system, a characteristic C-glycosidic bond-linked deoxy-sugar (d-olivose), and an unsaturated fatty acid chain. In this study, we identified a Streptomyces strain that produces balmoralmycin and seven biosynthetically related coproducts (compounds 2-8). Four of the coproducts (compounds 5-8) are novel compounds that feature a highly oxygenated or fragmented lactone ring, and three of them (compounds 3-5) exhibited cytotoxicity against the human pancreatic cancer cell line MIA PaCa-2 with IC50 values ranging from 0.9 to 1.2 µg/mL. Genome sequencing and CRISPR/dCas9-assisted gene knockdown led to the identification of the ~43 kb balmoralmycin biosynthetic gene cluster (bal BGC). The bal BGC encodes a type II polyketide synthase (PKS) system for assembling the angucycline aglycone, six enzymes for generating the deoxysugar d-olivose, and a hybrid type II/III PKS system for synthesizing the 2,4-decadienoic acid chain. Based on the genetic and chemical information, we propose a mechanism for the biosynthesis of balmoralmycin and the shunt products. The chemical and genetic studies yielded insights into the biosynthetic origin of the structural diversity of angucyclines. IMPORTANCE Angucyclines are structurally diverse aromatic polyketides that have attracted considerable attention due to their potent bioactivity and intriguing biosynthetic origin. Balmoralmycin is a representative of a small family of angucyclines with unique structural features and an unknown biosynthetic origin. We report a newly isolated Streptomyces strain that produces balmoralmycin in a high fermentation titer as well as several structurally related shunt products. Based on the chemical and genetic information, a biosynthetic pathway that involves a type II polyketide synthase (PKS) system, cyclases/aromatases, oxidoreductases, and other ancillary enzymes was established. The elucidation of the balmoralmycin pathway enriches our understanding of how structural diversity is generated in angucyclines and opens the door for the production of balmoralmycin derivatives via pathway engineering.


Asunto(s)
Policétidos , Streptomyces , Humanos , Vías Biosintéticas/genética , Familia de Multigenes , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Streptomyces/metabolismo , Línea Celular Tumoral
16.
Biomater Sci ; 11(1): 170-180, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36394464

RESUMEN

Supramolecular-polymeric hydrogels by combining low-molecular-weight gelators (LMWGs) with polymers have attracted great attention due to their unique double networks. Polymers are generally introduced into an LMWG matrix, thus enhancing the mechanical performance and broadening of the application fields of supramolecular hydrogels. Herein, a series of supramolecular-polymer hydrogels with inherent multiple properties were fabricated as wound dressings. An enzyme-like supramolecular H/G4 hydrogel co-assembled by hemin and guanosine-quartet motifs was successively integrated with hyaluronic acid (HA) and polyaniline (PANI), yielding a supramolecular-polymeric composite hydrogel (namely H/G4-HA(Cu)/PANI). The introduction of Cu2+-crosslinked hydrazide-grafted HA polymeric networks not only enhanced the viscoelasticity of the H/G4 supramolecular hydrogel but also endowed composite hydrogels with bioactive properties as wound healing dressings. The enzyme-like nanofibril H/G4 hydrogel could catalyse the oxidative polymerization of aniline, thus introducing PANI into gel networks. The porous H/G4-HA(Cu)/PANI exhibited a certain degree of swelling ratio under physiological conditions. H/G4-HA(Cu)/PANI also showed degradability, conductivity and appropriate mechanical properties. Through a full-thickness skin defect model of mice, this haemostatic, antioxidant, antibacterial and drug-free H/G4-HA(Cu)/PANI could accelerate wound healing processes by promoting wound closure, collagen deposition and upregulation of the CD31 expression level, which indicates that H/G4-HA(Cu)/PANI could be a promising wound dressing material.


Asunto(s)
Antioxidantes , Hidrogeles , Ratones , Animales , Antioxidantes/farmacología , Cicatrización de Heridas , Polímeros , Antibacterianos/farmacología
17.
Front Microbiol ; 13: 1012115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246293

RESUMEN

Lophiotrema is a genus of ascomycetous fungi within the family Lophiotremataceae. Members of this genus have been isolated as endophytes from a wide range of host plants and also from plant debris within terrestrial and marine habitats, where they are thought to function as saprobes. Lophiotrema sp. F6932 was isolated from white mangrove (Avicennia officinalis) in Pulau Ubin Island, Singapore. Crude extracts from the fungus exhibited strong antibacterial activity, and bioassay-guided isolation and structure elucidation of bioactive constituents led to the isolation of palmarumycin C8 and a new analog palmarumycin CP30. Whole-genome sequencing analysis resulted in the identification of a putative type 1 iterative PKS (iPKS) predicated to be involved in the biosynthesis of palmarumycins. To verify the involvement of palmarumycin (PAL) gene cluster in the biosynthesis of these compounds, we employed ribonucleoprotein (RNP)-mediated CRISPR-Cas9 to induce targeted deletion of the ketosynthase (KS) domain in PAL. Double-strand breaks (DSBs) upstream and downstream of the KS domain was followed by homology-directed repair (HDR) with a hygromycin resistance cassette flanked by a 50 bp of homology on both sides of the DSBs. The resultant deletion mutants displayed completely different phenotypes compared to the wild-type strain, as they had different colony morphology and were no longer able to produce palmarumycins or melanin. This study, therefore, confirms the involvement of PAL in the biosynthesis of palmarumycins, and paves the way for implementing a similar approach in the characterization of other gene clusters of interest in this largely understudied fungal strain.

18.
Chembiochem ; 23(22): e202200457, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36161451

RESUMEN

A family of novel cyclic lipopeptides named tasikamides A-H (Tsk A-H) were discovered recently in Streptomyces tasikensis P46. Aside from the unique cyclic pentapeptide scaffold shared by the tasikamides, Tsk A-C contain a hydrazone bridge that connects the cyclic pentapeptide to the lipophilic alkyl 5-hydroxylanthranilate (AHA) moiety. Here we report the production of tasikamides I-K (Tsk I-K) by a mutant strain of S. tasikensis P46 that overexpresses two pathway-specific transcription regulators. Unlike Tsk A-C, Tsk I-K feature a rare enaminone-bridge that links the cyclic peptide scaffold to the AHA moiety. Our experimental data suggest that Tsk I-K are generated by the coupling of two biosynthetic pathways via a nonenzymatic condensation reaction between an arylamine and a ß-keto aldehyde-containing precursor. The results underscore the nucleophilic and electrophilic reactivity of the ß-keto aldehyde moiety and its ability to promote fragment coupling reactions in live microbial cells.


Asunto(s)
Vías Biosintéticas , Streptomyces , Péptidos Cíclicos/metabolismo , Streptomyces/metabolismo , Antibacterianos/metabolismo , Lipopéptidos/metabolismo , Aldehídos/metabolismo , Familia de Multigenes
19.
Phytochemistry ; 203: 113366, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35970438

RESUMEN

A joint phytochemical investigation on the MeOH extracts of the twigs and needles of two endangered Pinaceae plants endemic to the Chinese Qinling Mountains, Picea neoveitchii (an evergreen spruce) and Larix potaninii var. chinensis (a deciduous larch), led to the isolation and characterization of 34 and 24 structurally diverse terpenoids, respectively. Among them, seven are previously undescribed, including a picane-type [i.e., 14(13 â†’ 12)abeo-12αH-serratane] (neoveitchin A) and a serratane-type (neoveitchin B) triterpenoids, and an abietane-type (neoveitchin C) as well as four labdane-type (potalarxins A-D) diterpenoids. Their structures and absolute configurations were established by extensive spectroscopic methods and/or X-ray diffraction analyses. All isolates were evaluated for their inhibitory activities against the human protein tyrosine phosphatase 1B (PTP1B). Serrat-14-en-3α,21ß-diol, betulinic acid, 3ß-hydroxy-11-ursen-13(28)-olide, ursolic acid, and oleanolic acid were found to have considerable inhibitory effects against PTP1B, with IC50 values ranging from 1.1 to 18.1 µM. The interactions of the bioactive triterpenoids with PTP1B were thereafter performed by employing molecular docking studies. In addition, 7-oxo-dehydroabietic acid (an abietane-type diterpenoid) and mangiferonic acid (a cycloartane-type triterpenoid) inhibited acetyl-coenzyme A carboxylase 1 (ACC1), with IC50 values of 3.4 and 6.6 µM, respectively.


Asunto(s)
Diterpenos , Larix , Ácido Oleanólico , Picea , Pinaceae , Triterpenos , Abietanos/farmacología , Coenzima A , Diterpenos/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Fitoquímicos/química , Extractos Vegetales , Plantas , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Terpenos/farmacología , Triterpenos/química
20.
J Mater Chem B ; 10(20): 3927-3935, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35485772

RESUMEN

Hydrogel wound dressings have attracted intense and increasing interest for their extracellular matrix like properties and bioactive material delivery ability. Various functional hydrogels loaded with metals (and their oxides), antibiotics and anti-inflammatory agents have been prepared to realize antioxidant, bactericidal and anti-inflammatory effects, accelerating wound healing. Nevertheless, it is still a big challenge to facilely fabricate hydrogel wound dressings with inherent desirable properties to promote wound healing and avoid some drawbacks such as toxicity of metals and drug resistance. Herein, we facilely prepared a series of (-)-epigallocatechin-3-O-gallate (EGCG)-crosslinked carboxymethyl chitosan-based hydrogels (EP gels) with inherent antioxidant, bactericidal and adhesive properties. Gluconate-terminated polyethylene glycol (PEG-glu) was introduced into gel networks to enhance the mechanical properties. The hydrogels are constructed via borate ester crosslinking between phenylboronic acid (PBA) groups of PBA-grafted carboxymethyl chitosan (CMCS-PBA) and diol groups of EGCG and PEG-glu. The hydrogels exhibited excellent self-healing properties, desirable mechanical and adhesive strength, free radical scavenging capability and outstanding bactericidal ability against S. aureus and E. coli. In the subsequent full-thickness skin defect model of mice, EP1 gel could promote the proliferation and remodeling process such as the regeneration of epidermis, dermis, and skin appendages, deposition of collagen, and upregulation of the VEGF level, thereby accelerating the healing of damaged skin. Overall, we facilely prepared polysaccharide-based hydrogels with inherent desirable properties as promising dressings for wound repair.


Asunto(s)
Quitosano , Hidrogeles , Adhesivos/farmacología , Animales , Antibacterianos/farmacología , Antioxidantes/farmacología , Catequina/análogos & derivados , Quitosano/farmacología , Escherichia coli , Hidrogeles/farmacología , Ratones , Staphylococcus aureus , Factor A de Crecimiento Endotelial Vascular , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...