Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(5)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39087896

RESUMEN

Quantum dynamics simulation and computational spectroscopy serve as indispensable tools for the theoretical understanding of various fundamental physical and chemical processes, ranging from charge transfer to photochemical reactions. When simulating realistic systems, the primary challenge stems from the overwhelming number of degrees of freedom and the pronounced many-body correlations. Here, we present Kylin-V, an innovative quantum dynamics package designed for accurate and efficient simulations of dynamics and spectroscopic properties of vibronic Hamiltonians for molecular systems and their aggregates. Kylin-V supports various quantum dynamics and computational spectroscopy methods, such as time-dependent density matrix renormalization group and our recently proposed single-site and hierarchical mapping approaches, as well as vibrational heat-bath configuration interaction. In this paper, we introduce the methodologies implemented in Kylin-V and illustrate their performances through a diverse collection of numerical examples.

2.
J Am Chem Soc ; 146(30): 21147-21159, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39013150

RESUMEN

Driven by the essential need of a green, safe, and low-cost approach to producing H2O2, a highly valuable multifunctional chemical, artificial photosynthesis emerges as a promising avenue. However, current catalyst systems remain challenging, due to the need of high-density sunlight, poor selectivity and activity, or/and unfavorable thermodynamics. Here, we reported that an indirect 2e- water oxidation reaction (WOR) in photocatalytic H2O2 production was unusually activated by C5N2 with piezoelectric effects. Interestingly, under ultrasonication, C5N2 exhibited an overall H2O2 photosynthesis rate of 918.4 µM/h and an exceptionally high solar-to-chemical conversion efficiency of 2.6% after calibration under weak light (0.1 sun). Mechanism studies showed that the piezoelectric effect of carbon nitride overcame the high uphill thermodynamics of *OH intermediate generation, which enabled a new pathway for 2e- WOR, the kinetic limiting step in the overall H2O2 production from H2O and O2. Benefiting from the outstanding sonication-assisted photocatalytic H2O2 generation under weak light, the concept was further successfully adapted to biomedical applications in efficient sono-photochemodynamic therapy for cancer treatment and water purification.

3.
J Thorac Dis ; 16(4): 2668-2673, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738227

RESUMEN

Mediastinal infection caused by anastomotic leak is hard to cure, mainly because the poor drainage at the site of mediastinal infection leads to persistent cavity infection, which in turn becomes a refractory mediastinal abscess cavity after minimally invasive esophagectomy (MIE)-McKeown. Herein, we explored sternocleidomastoid (SCM) muscle flaps and emulsified adipose tissue stromal vascular fraction containing adipose-derived stem-cells to address this issue. We studied 10 patients with esophageal cancer who underwent MIE-McKeown + 2-field lymphadenectomy and developed anastomotic and mediastinal leak and received new technology treatment in the Affiliated Cancer Hospital of Zhengzhou University from June 2018 to March 2022. The clinical data and prognosis of the patients were collected and analyzed. A total of 5 patients received this surgery, and no other complications occurred during the perioperative period. Among the 5 patients, 1 patient was partially cured, and 4 patients were completely cured. During the follow-up 3 months postoperatively, all these 5 patients could eat regular food smoothly, and no relapse of leak and mediastinal infection occurred. The new surgical method has achieved good results in the treatment of anastomotic leak. Compared with the traditional thoracotomy, it is a less invasive and feasible surgical approach, which can be used as a supplement to the effective surgical treatment of cervical anastomotic leak contaminating the mediastinum.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38666565

RESUMEN

Graphite is the popular anode material of current lithium-ion batteries (LIBs). However, its low specific capacity and poor lithium intercalation potential hinder its use for high-power and large-scale energy storage. To meet the demand for energy storage, novel anode materials with high capacity, fast chargeable capability, and long cycle life are of great interest. Herein, we demonstrate an advanced nitrogen-enriched hierarchical porous carbon serving as a lithiophilic anode material for ultrahigh capacity and long-life LIBs. NHPC-700 (under optimal synthetic conditions), featuring a high surface area, rich N-doping, high porosity, and partially graphitized nanosheet structures, is successfully fabricated from a Schiff-base copolymer via a template-incipient wetness impregnation method. NHPC-700 exhibits an ultrahigh reversible lithium storage capacity of 2796 mA h g-1 at 0.1 A g-1 while still maintaining a high capacity of 526 mA h g-1 at 10 A g-1 after 1000 cycles. Theoretical and experimental studies reveal that this remarkable Li storage performance can be attributed to the large number of N lithiophilic sites on the inner surface of the small mesoporous pores. These sites guide Li metal nucleation in the initial period and control well the volume variation during charge/discharge cycles, thus exhibiting excellent cycle stability and great potential for practical application.

5.
J Chem Phys ; 160(16)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38647303

RESUMEN

An exciton-phonon (ex-ph) model based on our recently developed block interaction product basis framework is introduced to simulate the distal charge separation (CS) process in aggregated perylenediimide (PDI) trimer incorporating the quantum dynamic method, i.e., the time-dependent density matrix renormalization group. The electronic Hamiltonian in the ex-ph model is represented by nine constructed diabatic states, which include three local excited (LE) states and six charge transfer (CT) states from both the neighboring and distal chromophores. These diabatic states are automatically generated from the direct products of the leading localized neutral or ionic states of each chromophore's reduced density matrix, which are obtained from ab initio quantum chemical calculation of the subsystem consisting of the targeted chromophore and its nearest neighbors, thus considering the interaction of the adjacent environment. In order to quantum-dynamically simulate the distal CS process with massive coupled vibrational modes in molecular aggregates, we used our recently proposed hierarchical mapping approach to renormalize these modes and truncate those vibrational modes that are not effectively coupled with electronic states accordingly. The simulation result demonstrates that the formation of the distal CS process undergoes an intermediate state of adjacent CT, i.e., starts from the LE states, passes through an adjacent CT state to generate the intermediates (∼200 fs), and then formalizes the targeted distal CS via further charge transference (∼1 ps). This finding agrees well with the results observed in the experiment, indicating that our scheme is capable of quantitatively investigating the CS process in a realistic aggregated PDI trimer and can also be potentially applied to exploring CS and other photoinduced processes in larger systems.

6.
J Phys Chem Lett ; 15(13): 3523-3530, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38522085

RESUMEN

Singlet fission (SF) is a process where a singlet state splits into two triplet states, which is essential for enhancing optoelectronic devices. Macrocyclic structures allow for precise control of chromophore orientation and facilitate singlet fission in solutions. However, the behavior of these structures in thin films, crucial for solid-state device optimization, remains underexplored. This study examines the aggregation and singlet fission processes of bipentacene macrocycles (BPc) in thin films using molecular dynamics simulations and electronic structure calculations. Findings indicate that BPc aggregates more rapidly with less chloroform, aligning parallel to the substrate. Intramolecular singlet fission (iSF) rates are rarely changed during evaporation, but the efficiency of intermolecular singlet fission (xSF) improves due to the increase in packing domains, suggesting that orderly crystal domains are not necessary for device efficiency. This opens avenues for varied device designs and traditional solution-based methods for optimal device development.

7.
J Chem Theory Comput ; 20(5): 1988-2009, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38380619

RESUMEN

The implementation of multireference configuration interaction (MRCI) methods in quantum systems with large active spaces is hindered by the expansion of configuration bases or the intricate handling of reduced density matrices (RDMs). In this work, we present a spin-adapted renormalized-residue-based MRCI (RR-MRCI) approach that leverages renormalized residues to effectively capture the entanglement between active and inactive orbitals. This approach is reinforced by a novel efficient algorithm, which also facilitates an efficient deployment of spin-adapted matrix product state MRCI (MPS-MRCI). The RR-MRCI framework possesses several advantages: (1) It considers the orbital entanglement and utilizes highly compressed MPS structure, improving computational accuracy and efficiency compared with internally contracted (ic) MRCI. (2) Utilizing small-sized buffer environments of a few external orbitals as probes based on quantum information theory, it enhances computational efficiency over MPS-MRCI and offers potential application to large molecular systems. (3) The RR framework can be implemented in conjunction with ic-MRCI, eliminating the need for high-rank RDMs, by using distinct renormalized residues. We evaluated this method across nine diverse molecular systems, including Cu2O22+ with an active space of (24e,24o) and two complexes of lanthanide and actinide with active space (38e,36o), demonstrating the method's versatility and efficacy.

8.
Front Oncol ; 14: 1349172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414743

RESUMEN

Background: Studies of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in resectable non-small-cell lung cancer (NSCLC) have been conducted. The purpose of our study was to evaluate the benefits of osimertinib as neoadjuvant therapy for resectable EGFR-mutated NSCLC. Method: This retrospective study evaluated patients with EGFR mutations in exon 19 or 21 who received targeted therapy with osimertinib (80 mg per day) before surgery between January 2019 and October 2023 in Henan Cancer Hospital. Results: Twenty patients were evaluated, all of whom underwent surgery. The rate of R0 resection was 100% (20/20). The objective response rate was 80% (16/20), and the disease control rate was 95% (19/20). Postoperative pathological analysis showed a 25% (5/20) major pathological response rate and 15% (3/20) pathological complete response rate. In total, 25% (5/20) developed adverse events (AEs), and the rate of grades 3-4 AEs was 10% (2/20). One patient experienced a grade 3 skin rash, and 1 patient experienced grade 3 diarrhea. Conclusion: Osimertinib as neoadjuvant therapy for resectable EGFR-mutated NSCLC is safe and well tolerated. Osimertinib has the potential to improve the radical resection rate and prognosis.

9.
BMC Geriatr ; 24(1): 14, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178031

RESUMEN

BACKGROUND: The trajectories of cognitive function in the oldest old individuals is unclear, and the relationship between resting heart rate (RHR) and cognitive decline is controversial. METHODS: 3300 participants who had cognitive function repeatedly measured 4 ~ 8 times were included, and latent class growth mixed models were used to identified the cognitive function trajectories. Cognitive decline was defined by the trajectory shapes, considering level and slope. After excluding individuals with sinus rhythm abnormal, 3109 subjects were remained and were divided into five groups by their RHR. Logistic regression models were used to estimate the relationship between RHR and cognitive decline. RESULTS: Three distinct cognitive function trajectory groups were identified: high-stable (n = 1226), medium-decreasing (n = 1526), and rapid-decreasing (n = 357). Individuals of medium/rapid-decreasing group were defined as cognitive decline. Adjusting for covariates, the odds ratios (95% confidence intervals) of RHR sub-groups were 1.19 (0.69, 2.05), 1.27 (1.03, 1.56), 1.30 (1.01, 1.67) and 1.62 (1.07, 2.47) for those RHR < 60 bpm, 70 ~ 79 bpm, 80 ~ 89 bpm and > 90 bpm respectively, compared with those RHR 60 ~ 69 bpm. The interaction effect between RHR and physical activity (PA) on cognitive decline was found, and stratification analysis was presented that higher RHR would only show risk effects on cognitive decline in those with physical inactivity (P < 0.05 for all). CONCLUSIONS: Our study demonstrates RHR more than 70 bpm present significant risk effect on cognitive decline, and this relationship is modified by PA. Elder population with physical inactivity and higher RHR should be paid more attention to prevent cognitive decline.


Asunto(s)
Disfunción Cognitiva , Descanso , Anciano de 80 o más Años , Humanos , Anciano , Estudios Longitudinales , Frecuencia Cardíaca/fisiología , Descanso/fisiología , Estudios de Cohortes , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/epidemiología , China/epidemiología , Factores de Riesgo
10.
J Hazard Mater ; 465: 133404, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38218037

RESUMEN

Organophosphate flame retardants (OPFRs) pose a new challenge to the marine environment due to their toxicity and persistence. This study explores the contributions of OPFR emissions from different land sources and sectors to its contamination of the East China Sea (ECS) using a novel atmospheric transport model(ChnMETOP)for POPs and a marine food web model. The results show that the major land sources causing OPFR pollution in the ECS were situated in Yangtze River Delta (YRD) and middle reach areas of China's Yangtze River, confirming that source proximity made most significant contributions to OPFR pollution in the ECS. Among those OPFR emission sectors, industrial emissions accounted for the highest modeled OPFR levels in the seawaters, followed by the OPFR usage process in textile, plastic, and rubber products. Assessment of bioaccumulation of OPFR in the marine food web of the ECS and the potential risk in commercial fish consumers reveals lower exposure risk via dietary fish ingestion. However, the risk might increase if OPFRs are continuously bioaccumulated in the biotic and released into the abiotic marine environment. This study simultaneously identified both the source locations and emission sectors, thereby providing important policy implications in mitigating OPFR pollution in the ECS marine environment.


Asunto(s)
Retardadores de Llama , Contaminantes Químicos del Agua , Animales , Compuestos Organofosforados , Contaminantes Químicos del Agua/análisis , Organofosfatos , China
11.
J Phys Chem A ; 128(5): 958-971, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38272019

RESUMEN

As one kind of approximation of the full configuration interaction solution, the selected configuration interaction (sCI) methods have been shown to be valuable for large active spaces. However, the inclusion of dynamic correlation beyond large active spaces is necessary for more quantitative results. Since the sCI wave function can provide a compact reference for multireference methods, previously, we proposed an externally contracted multireference configuration interaction method using the sCI reference reconstructed from the density matrix renormalization group wave function [J. Chem. Theory Comput. 2018, 14, 4747-4755]. The DMRG2sCI-EC-MRCI method is promising for dealing with more than 30 active orbitals and large basis sets. However, it suffers from two drawbacks: spin contamination and low efficiency when using Slater determinant bases. To solve these problems, in this work, we adopt configuration state function bases and introduce a new algorithm based on the hybrid of tree structure for convenient configuration space management and the graphical unitary group approach for efficient matrix element calculation. The test calculation of naphthalene shows that the spin-adapted version could achieve a speed-up of 6.0 compared with the previous version based on the Slater determinant. Examples of dinuclear copper(II) compound as well as Ln(III) and An(III) complexes show that the sCI-EC-MRCI can give quantitatively accurate results by including dynamic correlation over sCI for systems with large active spaces and basis sets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...