Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38999580

RESUMEN

Soil acidification is a significant form of agricultural soil degradation, which is accelerated by irrational fertilizer application. Sweetpotato and wheat rotation has emerged as an important rotation system and an effective strategy to optimize nutrient cycling and enhance soil fertility in hilly areas, which is also a good option to improve soil acidification and raise soil quality. Studying the effects of different fertilization regimes on soil acidification provides crucial data for managing it effectively. An eight-year field experiment explored seven fertilizer treatments: without fertilization (CK), phosphorus (P) and potassium (K) fertilization (PK), nitrogen (N) and K fertilization (NK), NP fertilization (NP), NP with K chloride fertilization (NPK1), NP with K sulfate fertilization (NPK2), and NPK combined with organic fertilization (NPKM). This study focused on the soil acidity, buffering capacity, and related indicators. After eight years of continuous fertilization in the sweetpotato-wheat rotation, all the treatments accelerated the soil acidification. Notably, N fertilization reduced the soil pH by 1.30-1.84, whereas N-deficient soil showed minimal change. Organic fertilizer addition resulted in the slowest pH reduction among the N treatments. Both N-deficient (PK) and organic fertilizer addition (NPKM) significantly increased the soil cation exchange capacity (CEC) by 8.83% and 6.55%, respectively, compared to CK. Similar trends were observed for the soil-buffering capacity (pHBC). NPK2 increased the soil K+ content more effectively than NPK1. NPKM reduced the sodium and magnesium content compared to CK, with the highest magnesium content among the treatments at 1.60 cmol·kg-1. Regression tree analysis identified the N input and soil magnesium and calcium content as the primary factors influencing the pHBC changes. Structural equation modeling showed that the soil pH is mainly influenced by the soil ammonium N content and pHBC, with coefficients of -0.28 and 0.29, respectively. Changes in the soil pH in the sweetpotato-wheat rotation were primarily associated with the pHBC and N input, where the CEC content emerged as the main factor, modulated by magnesium and calcium. Long-term organic fertilization enhances the soil pHBC and CEC, slowing the magnesium reduction and mitigating soil acidification in agricultural settings.

2.
Front Immunol ; 15: 1395596, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919629

RESUMEN

Vascular calcification (VC) is considered a common pathological process in various vascular diseases. Accumulating studies have confirmed that VC is involved in the inflammatory response in heart disease, and SPP1+ macrophages play an important role in this process. In VC, studies have focused on the physiological and pathological functions of macrophages, such as pro-inflammatory or anti-inflammatory cytokines and pro-fibrotic vesicles. Additionally, macrophages and activated lymphocytes highly express SPP1 in atherosclerotic plaques, which promote the formation of fatty streaks and plaque development, and SPP1 is also involved in the calcification process of atherosclerotic plaques that results in heart failure, but the crosstalk between SPP1-mediated immune cells and VC has not been adequately addressed. In this review, we summarize the regulatory effect of SPP1 on VC in T cells, macrophages, and dendritic cells in different organs' VC, which could be a potential therapeutic target for VC.


Asunto(s)
Macrófagos , Osteopontina , Calcificación Vascular , Animales , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Osteopontina/metabolismo , Placa Aterosclerótica/inmunología , Placa Aterosclerótica/patología , Placa Aterosclerótica/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Calcificación Vascular/inmunología , Calcificación Vascular/metabolismo , Calcificación Vascular/patología
3.
Biology (Basel) ; 13(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38927261

RESUMEN

To clarify how the digestive tract of the weatherloach, Misgurnus anguillicaudatus, serves a dual function of digestion and respiration simultaneously, the histological structures of its digestive tract, the passage of digesta and air passing through its intestine and the rate of intestinal evacuation have been studied. The results indicate that the digestive tract is divided into five functional regions, i.e., esophagus, anterior intestine, middle intestine, posterior intestine and rectum. The diverse intestinal structures have the specialized function of coordinating digestion and respiration. An X-ray barium meal examination showed in the normal breathing state, the contents of the intestine are diffusely semifluid, and air is distributed as bubbles in the dorsal intestine 2 h after feeding. After 5 h, the contents accumulated in the mid and posterior intestine, and gas flowed above the contents as bundles. After 8 h, the intestinal food was basically evacuated. In the intestinal air-breathing restricted group, the contents of the intestine remained diffuse, and a large number of digesta entered and remained in the rectum after 5 h. After the inhibition was relieved, the contents of the rectum were rapidly discharged. Measurement of the intestinal evacuation rate in the intestine showed that the evacuation of the intestinal contents lagged behind that of the normal group in the air-breathing restricted group. Compared to the normal state and inhibited GAB (gastrointestinal air breathing), we could deduce that GAB could promote the movement of the intestine.

4.
Plants (Basel) ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611502

RESUMEN

In recent years, overuse of chemical fertilization has led to soil acidification and decreased rice yield productivity in southern China. Biochar and manure co-application remediation may have positive effects on rice yield and improve acid paddy soil fertility. This study was conducted to understand the effects of co-application of wood biochar and pig manure on rice yield and acid paddy soil quality (0-40 cm soil layers) in a 5-year field experiment. The experiment consisted of six treatments: no biochar and no fertilizer (CK); biochar only (BC); mineral fertilizer (N); mineral fertilizer combined with biochar (N + BC); manure (25% manure N replacing fertilizer N) combined with mineral fertilizer (MN); and manure combined with mineral fertilizer and biochar (MN + BC). Total nitrogen application for each treatment was the same at 270 kg nitrogen ha-1y-1, and 30 t ha-1 biochar was added to the soil only in the first year. After five years, compared with N treatments, N + BC, MN, and MN + BC treatments increased the rice yield rate to 2.8%, 4.3%, and 6.3%, respectively, by improving soil organic matter, total nitrogen, and available phosphate under a 0-40 cm soil layer. MN + BC had the strongest resistance to soil acidification among all the treatments. The interaction between fertilizers and biochar application was significant (p < 0.05) in rice yield, soil electrical conductivity (10-20 cm), and soil available phosphate (20-40 cm). Principal component analysis indicated that the effect of manure on soil property was stronger than that of biochar in the 0-40 cm soil layer. The overall rice yield and soil fertility decreased in the order of biochar + mineral fertilizer + manure > mineral fertilizer + manure > biochar + mineral fertilizer > mineral fertilizer > biochar > control. These results suggest that biochar and manure co-application is a long-term viable strategy for improving acid soil productivity due to its improvements in soil pH, organic carbon, nutrient retention, and availability.

5.
J Cell Physiol ; 239(5): e31215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308657

RESUMEN

Primary cilia are distributed extensively within the corneal epithelium and endothelium. However, the presence of cilia in the corneal stroma and the dynamic changes and roles of endothelial and stromal cilia in corneal homeostasis remain largely unknown. Here, we present compelling evidence for the presence of primary cilia in the corneal stroma, both in vivo and in vitro. We also demonstrate dynamic changes of both endothelial and stromal cilia during corneal development. In addition, our data show that cryoinjury triggers dramatic cilium formation in the corneal endothelium and stroma. Furthermore, depletion of cilia in mutant mice lacking intraflagellar transport protein 88 compromises the corneal endothelial capacity to establish the effective tissue barrier, leading to an upregulation of α-smooth muscle actin within the corneal stroma in response to cryoinjury. These observations underscore the essential involvement of corneal endothelial and stromal cilia in maintaining corneal homeostasis and provide an innovative strategy for the treatment of corneal injuries and diseases.


Asunto(s)
Cilios , Sustancia Propia , Endotelio Corneal , Homeostasis , Animales , Ratones , Actinas/metabolismo , Cilios/metabolismo , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Lesiones de la Cornea/terapia , Sustancia Propia/citología , Sustancia Propia/crecimiento & desarrollo , Sustancia Propia/metabolismo , Endotelio Corneal/citología , Endotelio Corneal/crecimiento & desarrollo , Endotelio Corneal/metabolismo , Homeostasis/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Supresoras de Tumor/genética , Ciliopatías/metabolismo , Ciliopatías/patología , Ciliopatías/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...