Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Langmuir ; 40(17): 9215-9223, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38635343

RESUMEN

Designing and developing high-performance shielding materials against electromagnetic interference is of utmost importance due to the rapid advancement of wireless telecommunication technologies. Such materials hold both fundamental and technological significance. A three-stage process is presented for creating ultralight, flexible aerogels from biomass to shield against electromagnetic interference. Collagen fibers sourced from leather solid waste are used for: (i) freeze-drying preparation of collagen fibers/poly(vinyl alcohol) (PVA) aerogels, (ii) adsorption of silver nanowires (AgNWs) onto collagen fiber/PVA aerogels, and (iii) Hydrophobic modification of collagen fiber/PVA/AgNWs aerogels with 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (POTS). Scanning electron microscopy studies reveal that an interweaving of AgNWs and collagen fiber/PVA porous network has formed a conductive network, exhibiting an electrical conductivity of 103 S·m-1. The electromagnetic interference shielding effectiveness reached more than 62 dB, while the density was merely 5.8 mg/cm3. The collagen fiber/PVA/AgNWs/POTS aerogel displayed an even better electromagnetic shielding efficiency of 73 dB and water contact angle of 147°. The study results emphasize the distinctive capacity of leather solid waste to generate cost-effective, ecofriendly, and highly efficient electromagnetic interference shielding materials.

2.
Adv Sci (Weinh) ; : e2400687, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647425

RESUMEN

The development of functional textiles combining conventional apparel with advanced technologies for personal health management (PHM) has garnered widespread attention. However, the current PHM textiles often achieve multifunctionality by stacking functional modules, leading to poor durability and scalability. Herein, a scalable and robust PHM textile is designed by integrating electrical, radiative, and solar heating, electromagnetic interference (EMI) shielding, and piezoresistive sensing performance onto cotton fabric. This is achieved through an uncomplicated screen-printing process using silver paste. The conductivity of the PHM textile is ≈1.6  ×  104 S m-1, ensuring an electric heating temperature of ≈134 °C with a low voltage of 1.7 V, as well as an EMI shielding effectiveness of ≈56 dB, and human motion monitoring performance. Surprisingly, the radiative/solar heating capability of the PHM textile surpasses that of traditional warm leather. Even after undergoing rigorous physical and chemical treatments, the PHM textile maintains terrific durability. Additionally, the PHM textile possesses maneuverable scalability and comfortable wearability. This innovative work opens up new avenues for the strategic design of PHM textiles and provides an advantageous guarantee of mass production.

3.
Circ Heart Fail ; 17(3): e010896, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38426319

RESUMEN

BACKGROUND: Older adults have markedly increased risks of heart failure (HF), specifically HF with preserved ejection fraction (HFpEF). Identifying novel biomarkers can help in understanding HF pathogenesis and improve at-risk population identification. This study aimed to identify metabolites associated with incident HF, HFpEF, and HF with reduced ejection fraction and examine risk prediction in older adults. METHODS: Untargeted metabolomic profiling was performed in Black and White adults from the ARIC study (Atherosclerosis Risk in Communities) visit 5 (n=3719; mean age, 75 years). We applied Cox regressions to identify metabolites associated with incident HF and its subtypes. The metabolite risk score (MRS) was constructed and examined for associations with HF, echocardiographic measures, and HF risk prediction. Independent samples from visit 3 (n=1929; mean age, 58 years) were used for replication. RESULTS: Sixty metabolites (hazard ratios range, 0.79-1.49; false discovery rate, <0.05) were associated with incident HF after adjusting for clinical risk factors, eGFR, and NT-proBNP (N-terminal pro-B-type natriuretic peptide). Mannonate, a hydroxy acid, was replicated (hazard ratio, 1.36 [95% CI, 1.19-1.56]) with full adjustments. MRS was associated with an 80% increased risk of HF per SD increment, and the highest MRS quartile had 8.7× the risk of developing HFpEF than the lowest quartile. High MRS was also associated with unfavorable values of cardiac structure and function. Adding MRS over clinical risk factors and NT-proBNP improved 5-year HF risk prediction C statistics from 0.817 to 0.850 (∆C, 0.033 [95% CI, 0.017-0.047]). The association between MRS and incident HF was replicated after accounting for clinical risk factors (P<0.05). CONCLUSIONS: Novel metabolites associated with HF risk were identified, elucidating disease pathways, specifically HFpEF. An MRS was associated with HF risk and improved 5-year risk prediction in older adults, which may assist at at-risk population identification.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Anciano , Persona de Mediana Edad , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/etiología , Volumen Sistólico , Estudios Prospectivos , Biomarcadores , Factores de Riesgo , Fragmentos de Péptidos , Péptido Natriurético Encefálico , Pronóstico
4.
Mikrochim Acta ; 191(4): 219, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530477

RESUMEN

Hydroxypropyl chitosan-Cs3Bi2Cl9 perovskite quantum dots (HPCS-PQDs) were synthesized by a simple ligand-assisted reprecipitation method via green hydroxypropyl chitosan as the ligand and used as the specific signal of a fluorescence probe to achieve the highly sensitive detection of hexavalent chromium (Cr(VI)) and compared with chitosan-Cs3Bi2Cl9 QDs (CS-PQDs). HPCS-PQDs with multiple active hydroxyl passivations were found to enhance the photoluminescence quantum yield (PLQY) by 90%. After being placed in aqueous solution and irradiated with ultraviolet light for 96 h the fluorescence intensity of HPCS-PQDs remained above 60%. The blue emission of HPCS-PQDs has a good selectivity and short response time (30 s) for Cr(VI). A good linear relationship is established between the fluorescence quenching rate of the HPCS-PQDs and concentration of Cr(VI) from 0.8 to 400 µM, with a limit of detection (LOD) of 0.27 µM. The fluorescence quenching mechanism is the static quenching and internal filtration effect caused by HPCS-PQDs forming a non-fluorescent ground-state complex with Cr(VI). The sensor can not only be used to detect Cr(VI) in water samples with high accuracy but can also be prepared as a test paper for the detection for Cr(VI).

5.
Food Chem ; 447: 138956, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38503069

RESUMEN

Casein-based hydrogels (Casein Gels) possess advantageous properties, including mechanical strength, stability, biocompatibility, and even adhesion, conductivity, sensing capabilities, as well as controlled-releasing behavior of drugs. These features are attributed to their gelation methods and functionalization with various polymers. Casein Gels is an important protein-based material in the food industry, in terms of dairy and functional foods, biological and medicine, in terms of carrier for bioactive and sensitive drugs, wound healing, and flexible sensors and wearable devices. Herein, this review aims to highlight the importance of the features mentioned above via a comprehensive investigation of Casein Gels through multiple directions and dimensional applications. Firstly, the composition, structure, and properties of casein, along with the gelation methods employed to create Casein Gels are elaborated, which serves as a foundation for further exploration. Then, the application progresses of Casein Gels in dairy products, functional foods, medicine, flexible sensors and wearable devices, are thoroughly discussed to provide insights into the diverse fields where Casein Gels have shown promise and utility. Lastly, the existing challenges and future research trends are highlighted from an interdisciplinary perspective. We present the latest research advances of Casein Gels and provide references for the development of multifunctional biomass-based hydrogels.


Asunto(s)
Caseínas , Hidrogeles , Biomasa , Conductividad Eléctrica , Alimentos Funcionales
6.
J Med Virol ; 96(1): e29380, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38235849

RESUMEN

Hepatic venous pressure gradient (HVPG) is the gold standard for evaluating clinically significant portal hypertension (CSPH). However, reliable noninvasive methods are limited. Our study aims to investigate the diagnostic value of serum Golgi protein 73 (GP73) for CSPH in patients with compensated cirrhosis. The study enrolled 262 consecutive patients with compensated cirrhosis from three centers in China from February 2021 to September 2023, who underwent both serum GP73 tests and HVPG measurements. CSPH was defined as HVPG ≥ 10 mmHg. Diagnostic accuracy was evaluated using the areas under the receiver operating characteristic curve (AUC). The prevalence of CSPH was 56.9% (n = 149). There were significant differences between the CSPH and non-CSPH groups in the median serum GP73 level (126.8 vs. 73.1 ng/mL, p < 0.001). GP73 level showed a significant positive linear correlation with HVPG (r = 0.459, p < 0.001). The AUC for the diagnosis of CSPH using serum GP73 alone was 0.75 (95% confidence interval [CI] 0.68-0.81). Multivariate logistic regression analysis determined that the levels of GP73, platelets and international normalized ratio were independently associated with CSPH. The combination of these three markers was termed "IP73" score with an AUC value of 0.85 (95% CI 0.80-0.89) for CSPH. Using 0 as a cut-off value, the specificity and sensitivity of IP73 score were 77.9% and 81.9%, respectively. The IP73 score offers a novel, simple and noninvasive method of assessing CSPH in patients with compensated cirrhosis. A cut-off value of the IP73 score at 0 can distinguish patients with or without CSPH.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hipertensión Portal , Humanos , Biomarcadores , Hipertensión Portal/complicaciones , Hipertensión Portal/diagnóstico , Hígado , Cirrosis Hepática/complicaciones , Cirrosis Hepática/diagnóstico , Curva ROC , Factores de Tiempo
7.
Nat Commun ; 15(1): 528, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225249

RESUMEN

Heart failure (HF) causes substantial morbidity and mortality but its pathobiology is incompletely understood. The proteome is a promising intermediate phenotype for discovery of novel mechanisms. We measured 4877 plasma proteins in 13,900 HF-free individuals across three analysis sets with diverse age, geography, and HF ascertainment to identify circulating proteins and protein networks associated with HF development. Parallel analyses in Atherosclerosis Risk in Communities study participants in mid-life and late-life and in Trøndelag Health Study participants identified 37 proteins consistently associated with incident HF independent of traditional risk factors. Mendelian randomization supported causal effects of 10 on HF, HF risk factors, or left ventricular size and function, including matricellular (e.g. SPON1, MFAP4), senescence-associated (FSTL3, IGFBP7), and inflammatory (SVEP1, CCL15, ITIH3) proteins. Protein co-regulation network analyses identified 5 modules associated with HF risk, two of which were influenced by genetic variants that implicated trans hotspots within the VTN and CFH genes.


Asunto(s)
Aterosclerosis , Insuficiencia Cardíaca , Humanos , Proteómica , Factores de Riesgo , Fenotipo , Proteínas Portadoras/genética , Glicoproteínas/genética , Proteínas de la Matriz Extracelular/genética
8.
Small ; 20(15): e2308194, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009488

RESUMEN

Passive heating textiles (PHTs) have drawn increasing attention due to the advantages of energy-conservation heating. However, the heating capabilities of current PHTs are typically static and non-tunable, presenting poor adaptation to dynamic winter. Herein, a novel Janus textile with tunable heating modes is developed by constructing a customized structure with asymmetric optical properties. This Janus textile is created by coating one side of a cotton fabric with silver nanowires (AgNWs) and then applying transition metal carbides/nitrides (MXene) to the other side. The MXene side exhibits high solar absorptivity and low mid-infrared emissivity, while the AgNWs side has moderate solar absorptivity and mid-infrared emissivity. This structure ensures that the solar and radiative heating temperatures of the MXene side are 16 °C and 1.7 °C higher than those of the AgNWs side. This distinction allows for on-demand, accurate adjustments in solar and radiative heating capabilities by flipping the textile according to ambient temperature. Furthermore, this innovative design also features desired electric heating, thermal camouflage, self-cleaning and antibacterial properties, electromagnetic interference shielding, durability, and wearability. The Janus textile enables precise thermoregulation of the human body to adapt to variable cold weather, making it essential for optimal personal thermal management and climate change mitigation.

9.
Small ; : e2308514, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38098438

RESUMEN

Highly robust flexible multifunctional film with excellent electromagnetic interference shielding and electrothermal/photothermal characteristics are highly desirable for aerospace, military, and wearable devices. Herein, an asymmetric gradient multilayer structured bacterial cellulose@Fe3 O4 /carbon nanotube/Ti3 C2 Tx (BC@Fe3 O4 /CNT/Ti3 C2 Tx ) multifunctional composite film is fabricated with simultaneously demonstrating fast Joule response, excellent EMI shielding effectiveness (EMI SE) and photothermal conversion properties. The asymmetric gradient 6-layer composite film with 40% of Ti3 C2 Tx possesses excellent mechanical performance with exceptional tensile strength (76.1 MPa), large strain (14.7%), and good flexibility. This is attributed to the asymmetric gradient multilayer structure designed based on the hydrogen bonding self-assembly strategy between Ti3 C2 Tx and BC. It achieved an EMI SE of up to 71.3 dB, which is attributed to the gradient "absorption-reflection-reabsorption" mechanism. Furthermore, this composite film also exhibits excellent low-voltage-driven Joule heating (up to 80.3 °C at 2.5 V within 15 s) and fast-response photothermal performance (up to 101.5 °C at 1.0 W cm-2 within 10 s), which is attributed to the synergistic effect of heterostructure. This work demonstrates the fabrication of multifunctional bacterial cellulose@Fe3 O4 /carbon nanotube/Ti3 C2 Tx composite film has promising potentials for next-generation wearable electronic devices in energy conversion, aerospace, and artificial intelligence.

10.
Fish Shellfish Immunol ; 142: 109178, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37863126

RESUMEN

The enzyme nitric oxide synthase 2 or inducible NOS (NOS2), reactive oxygen species (ROS) and nitric oxide (NO) are important participants in various inflammatory and immune responses. However, the functional significances of the correlations among piscine NOS2, ROS and NO during pathogen infection remain unclear. In teleost, there are two nos2 genes (nos2a and nos2b). It has been previously reported that zebrafish nos2a behaves as a classical inducible NOS, and nos2b exerts some functions similar to mammalian NOS3. In the present study, we reported the functional characterization of zebrafish nos2a during bacterial infection. We found that zebrafish nos2a promoted bacterial proliferation, accompanied by an increased susceptibility to Edwardsiella piscicida infection. The nagative regulation of zebrafish nos2a during E. piscicida infection was characterized by the impaired ROS levels, the induced NO production and the decreased expressions of proinflammatory cytokines, antibacterial genes and oxidant factors. Furthermore, although both inducing ROS and inhibiting NO production significantly inhibited bacterial proliferation, only inhibiting NO production but not inducing ROS significantly increased resistance to E. piscicida infection. More importantly, ROS supplementation and inhibition of NO completely abolished this detrimental consequence mediated by zebrafish nos2a during E. piscicida infection. All together, these results firstly demonstrate that the innate response mediated by zebrafish nos2a in promoting bacterial proliferation is dependent on the lower ROS level and higher NO production. The present study also reveals that inhibition of NO can be effective in the protection against E. piscicida infection.


Asunto(s)
Edwardsiella , Infecciones por Enterobacteriaceae , Animales , Citocinas , Pez Cebra , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proliferación Celular , Edwardsiella/fisiología , Mamíferos/metabolismo
11.
ACS Appl Mater Interfaces ; 15(36): 43205-43215, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638771

RESUMEN

Self-propelled separation materials, that is, motor, are one of the keys to realizing smart oil-water separation. Although three-dimensional sponges such as commercial melamine sponge (MS) exhibit excellent oil-water separation ability, they cannot move by themselves on water. Aiming at solving this problem, a polydimethylsiloxane (PDMS) and molybdenum disulfide (MoS2) modified MS motor (PDMS@MS/MoS2) with an asymmetric multilayer structure was prepared, in which the photothermal layer MoS2 provided the propelling force for the motor under infrared light irradiation, and the middle layer PDMS was used as the superhydrophobic modified agent and adhesive agent between commercial MS and MoS2 powder. PDMS coated MS (PDMS@MS) as the superhydrophobic layer showed good superhydrophobic ability (153.1°) and oil-water separation capacity (52.33 g/g to liquid paraffin). Furthermore, the introduction of MoS2 made the speed of the sponge motor reach 8.27 mm s-1 with a removal quantity of 12.20 g/g for cyclohexane. After recycling 8 times, the contact angle, cyclohexane capturing amount, and average velocity of the motor were 150.3°, 11.40 g/g, and 8.41 mm/s, respectively. Meanwhile, PDMS@MS/MoS2 kept a similar light-propelling velocity (∼8 mm) at different pH values and in simulated seawater, demonstrating that the light-propelling motor possessed a good cycle and practical performance, which provides a possibility for the directional light propulsion of a sponge motor in oil-water separation.

12.
Front Plant Sci ; 14: 1213807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416884

RESUMEN

Heavy ion beam (HIB) is an effective physical mutagen that has been widely used in plant mutational breeding. Systemic knowledge of the effects caused by different HIB doses at developmental and genomic levels will facilitate efficient breeding for crops. Here we examined the effects of HIB systematically. Kitaake rice seeds were irradiated by ten doses of carbon ion beams (CIB, 25 - 300 Gy), which is the most widely used HIB. We initially examined the growth, development and photosynthetic parameters of the M1 population and found that doses exceeding 125 Gy caused significant physiological damages to rice. Subsequently, we analyzed the genomic variations in 179 M2 individuals from six treatments (25 - 150 Gy) via whole-genome sequencing (WGS). The mutation rate peaks at 100 Gy (2.66×10-7/bp). Importantly, we found that mutations shared among different panicles of the same M1 individual are at low ratios, validating the hypothesis that different panicles may be derived from different progenitor cells. Furthermore, we isolated 129 mutants with distinct phenotypic variations, including changes in agronomic traits, from 11,720 M2 plants, accounting for a 1.1% mutation rate. Among them, about 50% possess stable inheritance in M3. WGS data of 11 stable M4 mutants, including three lines with higher yields, reveal their genomic mutational profiles and candidate genes. Our results demonstrate that HIB is an effective tool that facilitates breeding, that the optimal dose range for rice is 67 - 90% median lethal dose (LD50), and that the mutants isolated here can be further used for functional genomic research, genetic analysis, and breeding.

13.
Int J Biol Macromol ; 247: 125829, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37453634

RESUMEN

The non-degradable traditional polyethylene (PE) mulch film has caused great harm to both the ecological environment as well as human health. Therefore, the biodegradable bone gelatin (B-Gel) was innovatively selected to build the mulch film. To further enhance the toughness of the B-Gel mulch films, a POSS star-shaped polymer/bone gelatin (P(POSS-AGE-HEA)/B-Gel) composite was prepared by introducing POSS star-shaped polymer into B-Gel via in situ polymerization using polyhedral oligomeric silsesquioxane (POSS), allyl glycidyl ether (AGE) and hydroxyethyl acrylate (HEA) as raw material, and then was cast to obtain the P(POSS-AGE-HEA)/B-Gel mulch film. The epoxy group of POSS star-shaped polymer with the -COOH and -NH2 of B-Gel forms a covalent bond, and the hydroxyl group with the active groups of B-Gel forms hydrogen bonds. Meanwhile, the multiple side chains of POSS star-shaped polymer are intertwined with B-Gel. These covalent and hydrogen bonds as sacrificial bonds for effective energy dissipation giving the bone gelatin-based film excellent mechanical properties with a tensile strength of 7.56 ± 0.64 MPa and elongation at break of 197.49 ± 17.63 %. Additionally, it also demonstrated sound water vapor barrier, surface hydrophobicity, light transmittance and the effect of facilitating the growth and germination ratio (93.75 %) of wheat.


Asunto(s)
Gelatina , Polímeros , Humanos , Polímeros/química , Resistencia a la Tracción
15.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36991980

RESUMEN

The vertical profiles of nitrogen dioxide (NO2) and formaldehyde (HCHO) in the troposphere at the Longfengshan (LFS) regional atmospheric background station (127°36' E, 44°44' N, 330.5 m above sea level) from 24 October 2020 to 13 October 2021 were retrieved from solar scattering spectra by multi-axis differential optical absorption spectroscopy (MAX-DOAS). We analyzed the temporal variations of NO2 and HCHO as well as the sensitivity of ozone (O3) production to the concentration ratio of HCHO to NO2. The largest NO2 volume mixing ratios (VMRs) occur in the near-surface layer for each month, with high values concentrated in the morning and evening. HCHO has an elevated layer around the altitude of 1.4 km consistently. The means ± standard deviations of vertical column densities (VCDs) and near-surface VMRs were 4.69 ± 3.72 ×1015 molecule·cm-2 and 1.22 ± 1.09 ppb for NO2, and they were 1.19 ± 8.35 × 1016 molecule·cm-2 and 2.41 ± 3.26 ppb for HCHO. The VCDs and near-surface VMRs for NO2 were high in the cold months and low in the warm months, while HCHO presented the opposite. The larger near-surface NO2 VMRs appeared in the condition associated with lower temperature and higher humidity, but this relationship was not found between HCHO and temperature. We also found the O3 production at the Longfengshan station was mainly in the NOx-limited regime. This is the first study presenting the vertical distributions of NO2 and HCHO in the regional background atmosphere of northeastern China, which are significant to enhancing the understanding of background atmospheric chemistry and regional ozone pollution processes.

16.
Int J Biol Macromol ; 238: 124055, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36948338

RESUMEN

Flexible hydrogels have emerged as highly-desirable materials for wearable strain sensors. However, pristine biomass hydrogel systems are limited by their lack of stretchability, self-adhesion, and sensitivity. Here, a novel CA/MWCNT/PAAm double-network conductive hydrogel was developed through integrating casein (CA) micelles and multi-walled carbon nanotubes (MWCNT) into the polyacrylamide (PAAm) network. The resulting hydrogel displayed desired properties such as adhesiveness, toughness, self-healing, and near-infrared photothermal response. In this hybrid system, MWCNT were uniformly dispersed in the presence of casein micelles through hydrogen bonding and electrostatic interactions, favoring its role of nano reinforcement. Moreover, based on the "casein micelle-nanoparticle double cross-linking" mechanism and its double network structure, the prepared hydrogel showed high extensibility (2288 % ± 63 %), fast responsiveness (273 ± 5.13 ms), high sensitivity (GF = 12.46 ± 0.35), and a wide strain range (1-1000 %). Through consistent and repeated electrical inputs, this hydrogel was able to detect including large and small human movements, such as hand, leg, and swallowing motions. The results from this study provide a new way to fabricate bio-based hydrogel sensors with excellent mechanical and electrical properties.


Asunto(s)
Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Humanos , Caseínas , Micelas , Adhesivos/química , Conductividad Eléctrica , Hidrogeles/química
17.
Ann Med ; 55(1): 428-446, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36645115

RESUMEN

The R-spondin protein family comprises four members (RSPO1-4), which are agonists of the canonical Wnt/ß-catenin pathway. Emerging evidence revealed that RSPOs should not only be viewed as agonists of the Wnt/ß-catenin pathway but also as regulators for tumor development and progression. Aberrant expression of RSPOs is related to tumorigenesis and tumor development in multiple cancers and their expression of RSPOs has also been correlated with anticancer immune cell signatures. More importantly, the role of RSPOs as potential target therapies and their implication in cancer progressions has been studied in the preclinical and clinical settings. These findings highlight the possible therapeutic value of RSPOs in cancer medicine. However, the expression pattern, effects, and mechanisms of RSPO proteins in cancer remain elusive. Investigating the many roles of RSPOs is likely to expand and improve our understanding of the oncogenic mechanisms mediated by RSPOs. Here, we reviewed the recent advances in the functions and underlying molecular mechanisms of RSPOs in tumor development, cancer microenvironment regulation, and immunity, and discussed the therapeutic potential of targeting RSPOs for cancer treatment. In addition, we also explored the biological feature and clinical relevance of RSPOs in cancer mutagenesis, transcriptional regulation, and immune correlation by bioinformatics analysis.KEY MESSAGESAberrant expressions of RSPOs are detected in various human malignancies and are always correlated with oncogenesis.Although extensive studies of RSPOs have been conducted, their precise molecular mechanism remains poorly understood.Bioinformatic analysis revealed that RSPOs may play a part in the development of the immune composition of the tumor microenvironment.


Asunto(s)
Neoplasias , Trombospondinas , Humanos , beta Catenina/genética , Carcinogénesis/genética , Regulación de la Expresión Génica , Neoplasias/genética , Trombospondinas/genética , Trombospondinas/metabolismo , Microambiente Tumoral/genética , Vía de Señalización Wnt/fisiología
18.
Carbohydr Polym ; 304: 120511, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36641159

RESUMEN

The development of sustainable and eco-friendly leather industry requires green tanning agents because of unbounded chromium (easily converted into hazardous Cr-VI) in chrome tanned leather. In this study, a chrome-free tanning agent (OS-LDHs) was established by integrating layered double hydroxide (magnesium aluminum zirconium hydrotalcite, LDHs) with starch derivatives. A series of oxidized starch (OS) were prepared as masking agents for LDHs tanning process. Among them, the weight-average molecular weight (Mw) of 1685 g/mol could be reached, which will promise the well-distribution of OS. The SEM and EDS analysis confirmed the uniform penetration of OS-LDHs, avoiding accumulation on the surface of crust leather. Notably, leather tanned by OS-LDHs achieved shrinkage temperature of 66.7 °C, porosity of 75.51 % and tear strength of 66.7 N/mm. Not only the hydrogen bond but also the coordination between NH2, COOH in collagen and OS-2-LDHs improved the thermal stability of leather without destroying the collagen triple helix.


Asunto(s)
Almidón , Curtiembre , Industrias , Cromo/química , Colágeno/química
19.
J Colloid Interface Sci ; 631(Pt B): 89-100, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36395630

RESUMEN

Construction of multi-component heterostructures as a flame retardant reinforcer within a polymer is a favorable option to realize the synergistic effects between different types of reinforcers. However, it is difficult to improve polymer flame retardance as the poor compatibility of retardants with polymer matrix can lead to low dispersion. Herein, 3-D flower-like templated layered double hydroxides (LDH) and graphene (rGO) were prepared on the surface of a caprolactam-modified casein micelle template for integration with casein latex based on a blending-casting method. Temp@LDH-rGO hardly affected the stability of the casein-based latex, as its casein-based composite latex was used as a leather surface coating. The limiting oxygen index of finished leather increased up to 27.4% when casein-based 4% Temp@LDH-rGO composite latex was applied for leather finishing. In contrast, its heat release rate and smoke production rate were lowered to 55.686 kW/m2 and 2.239 m-2 s-1, respectively. According to the combustion analysis, the leather samples finished by casein-based Temp@LDH-rGO latex exhibited significant improvement in flame retardant and smoke suppression performance. The casein-based Temp@LDH-rGO composite latex has thus been demonstrated as a highly effective option for functional coatings in diverse fields (e.g., automobile interior decoration, furniture manufacturing, and firefighting equipment).


Asunto(s)
Retardadores de Llama , Látex , Caseínas , Hidróxidos , Humo
20.
Polymers (Basel) ; 14(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36559713

RESUMEN

In this study, cellulose nanocrystals hollow microspheres (HMs) were fabricated through Pickering emulsion polymerization, in which hydrophobically modified cellulose nanocrystals (CNCs) acted as Pickering stabilizers. The hollow interior core was prepared by solvent evaporation. This manuscript describes the synthesis of HMs in detail. The hollow structure and nanoscale size of HMs were verified using TEM. The resultant HMs could easily coat self-forming films on the surface of PET fabrics. Additionally, these coatings exhibited superior breathability and moisture permeability properties with a high one-way transport index of 936.33% and a desirable overall moisture management capability of 0.72. Cellulose nanocrystal hollow microsphere coatings could be used as a moisture-wicking functionality agent for finishing fabrics, oil-water separation, and fog harvesting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA