Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6418, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080296

RESUMEN

Histone lysine crotonylation, an evolutionarily conserved modification differing from acetylation, exerts pivotal control over diverse biological processes. Among these are gene transcriptional regulation, spermatogenesis, and cell cycle processes. However, the dynamic changes and functions of histone crotonylation in preimplantation embryonic development in mammals remain unclear. Here, we show that the transcription coactivator P300 functions as a writer of histone crotonylation during embryonic development. Depletion of P300 results in significant developmental defects and dysregulation of the transcriptome of embryos. Importantly, we demonstrate that P300 catalyzes the crotonylation of histone, directly stimulating transcription and regulating gene expression, thereby ensuring successful progression of embryo development up to the blastocyst stage. Moreover, the modification of histone H3 lysine 18 crotonylation (H3K18cr) is primarily localized to active promoter regions. This modification serves as a distinctive epigenetic indicator of crucial transcriptional regulators, facilitating the activation of gene transcription. Together, our results propose a model wherein P300-mediated histone crotonylation plays a crucial role in regulating the fate of embryonic development.


Asunto(s)
Blastocisto , Proteína p300 Asociada a E1A , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Histonas , Lisina , Histonas/metabolismo , Animales , Desarrollo Embrionario/genética , Femenino , Ratones , Proteína p300 Asociada a E1A/metabolismo , Proteína p300 Asociada a E1A/genética , Blastocisto/metabolismo , Lisina/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Regiones Promotoras Genéticas , Epigénesis Genética , Masculino
2.
Front Genet ; 14: 1131698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035744

RESUMEN

Mammalian centromeres are generally composed of dispersed repeats and the satellites such as α-satellites in human and major/minor satellites in mouse. Transcription of centromeres by RNA polymerase II is evolutionary conserved and critical for kinetochore assembly. In addition, it has been found that the transcribed satellite RNAs can bind DNA repair proteins such as MRE11 and PRKDC, and excessively expressed satellite RNAs could induce genome instability and facilitate tumorigenesis. During the maturation of female oocyte, centromeres are critical for accurate segregation of homologous chromosomes and sister chromatids. However, the dynamics of oocyte centromere transcription and whether it associated with DNA repair proteins are unknown. In this study, we found the transcription of centromeres is active in growing oocytes but it is silenced when oocytes are fully grown. DNA repair proteins like Mlh1, Mre11 and Prkdc are found associated with the minor satellites and this association can be interfered by RNA polymerase II inhibitor α-amanitin. When the growing oocyte is in vitro matured, Mlh1/Mre11/Prkdc foci would release from centromeres to the ooplasm. If the oocytes are treated with Mre11 inhibitor Mirin, the meiosis resumption of growing oocytes with Mre11 foci can be suppressed. These data revealed the dynamic of centromeric transcription in oocytes and its potential association with DNA repair proteins, which provide clues about how oocytes maintain centromere stability and assemble kinetochores.

3.
Reprod Toxicol ; 117: 108359, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870580

RESUMEN

In human, endo- or exogeneous factors might alter the cellular composition, the endocrine and inflammatory micro-environments and the metabolic balance in testis. These factors will further impair the testicular spermatogenesis capacity and alter the transcriptome of testis. Conversely, it should be possible that the alteration of the transcriptomes in testes be used as an indicator to evaluate the testicular spermatogenesis capacity and to predict the causing factors. In this study, using the transcriptome data of human testes and whole blood which were collected by the genotype-tissue expression project (GTEx), we analyzed the transcriptome differences in human testes and explored those factors that affecting spermatogenesis. As a result, testes were clustered into five clusters according to their transcriptomic features, and each cluster of testes was evaluated as having different spermatogenesis capacity. High rank genes of each cluster and the differentially expressed genes in lower functional testes were analyzed. Transcripts in whole blood which may be associated with testis function were also analyzed by the correlation test. As a result, factors such as immune response, oxygen transport, thyrotropin, prostaglandin and tridecapeptide neurotensin were found associated with spermatogenesis. These results revealed multiple clues about the spermatogenesis regulation in testis and provided potential targets to improve the fertility of men in clinic.


Asunto(s)
Testículo , Transcriptoma , Humanos , Masculino , Testículo/metabolismo , Espermatogénesis/genética , Perfilación de la Expresión Génica
4.
J Pineal Res ; 74(2): e12846, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36428267

RESUMEN

With the rapid change of people's lifestyle, more childbearing couples live with irregular schedules (i.e., staying up late) and suffer from decreased fertility and abortion, which can be caused by luteal phase defect (LPD). We used continuous light-exposed mice as a model to observe whether continuous light exposure may affect luteinization and luteal function. We showed that the level of progesterone in serum reduced (p < .001), the number of corpus luteum (CL) decreased (p < .01), and the expressions of luteinization-related genes (Lhcgr, Star, Ptgfr, and Runx2), clock genes (Clock and Per1), and Mt1 were downregulated (p < .05) in the ovaries of mice exposed to continuous light, suggesting that continuous light exposure induces defects in luteinization and luteal functions. Strikingly, injection of melatonin (3 mg/kg) could improve luteal functions in continuous light-exposed mice. Moreover, we found that, after 2 h of hCG injection, the level of pERK1/2 in the ovary decreased in the continuous light group, but increased in the melatonin administration group, suggesting that melatonin can improve LPD caused by continuous light exposure through activating the ERK1/2 pathway. In summary, our data demonstrate that continuous light exposure affects ovary luteinization and luteal function, which can be rescued by melatonin.


Asunto(s)
Melatonina , Ovario , Femenino , Embarazo , Ratones , Animales , Ovario/metabolismo , Ratones Endogámicos ICR , Melatonina/farmacología , Melatonina/metabolismo , Cuerpo Lúteo/metabolismo , Progesterona/metabolismo , Luteinización
5.
Nat Biomed Eng ; 6(4): 339-350, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35437313

RESUMEN

Mitochondrial replacement therapy (MRT) has been used to prevent maternal transmission of disease-causing mutations in mitochondrial DNA (mtDNA). However, because MRT requires nuclear transfer, it carries the risk of mtDNA carryover and hence of the reversion of mtDNA to pathogenic levels owing to selective replication and genetic drift. Here we show in HeLa cells, mouse embryos and human embryos that mtDNA heteroplasmy can be reduced by pre-labelling the mitochondrial outer membrane of a donor zygote via microinjection with an mRNA coding for a transmembrane peptide fused to an autophagy receptor, to induce the degradation of the labelled mitochondria via forced mitophagy. Forced mitophagy reduced mtDNA carryover in newly reconstructed embryos after MRT, and had negligible effects on the growth curve, reproduction, exercise capacity and other behavioural characteristics of the offspring mice. The induction of forced mitophagy to degrade undesired donor mtDNA may increase the clinical feasibility of MRT and could be extended to other nuclear transfer techniques.


Asunto(s)
Terapia de Reemplazo Mitocondrial , Animales , ADN Mitocondrial/genética , Células HeLa , Heteroplasmia , Humanos , Ratones , Mitocondrias/genética , Terapia de Reemplazo Mitocondrial/métodos , Mitofagia/genética
6.
Reprod Toxicol ; 108: 35-42, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35093514

RESUMEN

Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis, are widespread in developed countries and gradually increasing in developing countries. Evidences showed that man with CD has a decrease of serum testosterone, but how IBD take effects on testicular testosterone synthesis is not well elucidated. To investigate the effects of IBD on testis, we analyzed testicular metabolome and transcriptome data of the dextran sulfate sodium (DSS) induced IBD mice. As a result, metabolomic data showed that DSS indeed induced androgen decrease in mouse testis. Correspondingly, androgen synthesis associated genes, especially Lhcgr, were down-regulated in DSS testis. From the metabolomic data, we found vitamin intake associated metabolites vitamin B2 and pyridoxamine were significantly decreased, whereas fatty acid metabolism associated molecules N-lauroylglycine and N-decanoylglycine were increased in DSS testis. In addition, we found 8-hydroxy-deoxyguanosine, a DNA oxidative damage marker, and 8-oxoguanine, a molecule responsible for DNA damage repair, were also changed in DSS testis. Simultaneously, our data also showed that DSS up-regulated the expression of meiosis initiation associated gene Stra8 and oxygen transport associated genes in testis. In summary, these results depicted the complex effects of colitis on testis. These metabolites and transcripts changed in DSS testis could be used as potential targets for IBD treatment or symptom relieve.


Asunto(s)
Colitis/genética , Colitis/metabolismo , Testículo/metabolismo , Animales , Colitis/inducido químicamente , Sulfato de Dextran , Modelos Animales de Enfermedad , Masculino , Metaboloma , Ratones Endogámicos ICR , Transcriptoma
7.
8.
PLoS One ; 16(11): e0259518, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34727132

RESUMEN

Spontaneous abortion is an impeding factor for the success rates of human assistant reproductive technology (ART). Causes of spontaneous abortion include not only the pregnant mothers' health conditions and lifestyle habits, but also the fetal development potential. Evidences had shown that fetal chromosome aneuploidy is associated with fetal spontaneous abortion, however, it is still not definite that whether other genome variants, like copy number variations (CNVs) or loss of heterozygosity (LOHs) is associated with the spontaneous abortion. To assess the relationship between the fetal genome variants and abortion during ART, a chromosomal microarray data including chromosomal information of 184 spontaneous aborted fetuses, 147 adult female patients and 78 adult male patients during ART were collected. We firstly analyzed the relationship of fetal aneuploidy with maternal ages and then compared the numbers and lengths of CNVs (< 4Mbp) and LOHs among adults and aborted fetuses. In addition to the already known association between chromosomal aneuploidy and maternal ages, from the chromosomal microarray data we found that the numbers and the accumulated lengths of short CNVs and LOHs in the aborted fetuses were significantly larger or longer than those in adults. Our findings indicated that the increased numbers and accumulated lengths of CNVs or LOHs might be associated with the spontaneous abortion during ART.


Asunto(s)
Feto Abortado/metabolismo , Variaciones en el Número de Copia de ADN/genética , Aborto Espontáneo , Femenino , Humanos , Pérdida de Heterocigocidad/genética , Masculino , Análisis por Micromatrices , Embarazo
9.
Biol Reprod ; 105(5): 1234-1245, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34467391

RESUMEN

Within the development of ovarian follicle, in addition to cell proliferation and differentiation, sophisticated cell-cell cross talks are established among follicular somatic cells such as granulosa cells (GCs) and theca cells. To systematically reveal the cell differentiation and signal transductions in follicular somatic cells, we collected the mouse follicular somatic cells from secondary to ovulatory stage, and analyzed the single cell transcriptomes. Having data filtered and screened, we found 6883 high variable genes in 4888 single cells. Then follicular somatic cells were clustered into 26 cell clusters, including 18 GC clusters, 4 theca endocrine cell (TEC) clusters, and 4 other somatic cell clusters, which include immune cells and Acta2 positive theca externa cells. From our data, we found there was metabolic reprogramming happened during GC differentiation. We also found both Cyp19a1 and Cyp11a1 could be expressed in TECs. We analyzed the expression patterns of genes associated with cell-cell interactions such as steroid hormone receptor genes, insulin signaling genes, and cytokine/transformation growth factor beta associated genes in all cell clusters. Lastly, we clustered the highly variable genes into 300 gene clusters, which could be used to search new genes involved in follicle development. These transcriptomes of follicular somatic cells provide us potential clues to reveal how mammals regulating follicle development and could help us find targets to improve oocyte quality for women with low fertility.


Asunto(s)
Comunicación Celular/genética , Expresión Génica/fisiología , Folículo Ovárico/metabolismo , Transducción de Señal , Transcriptoma , Animales , Femenino , Ratones , Análisis de Secuencia de ARN , Análisis de la Célula Individual
10.
Front Cell Dev Biol ; 9: 735971, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540848

RESUMEN

Utilizing microinjection to introduce biological molecules such as DNA, mRNA, siRNA, and proteins into the cell is well established to study oocyte maturation and early embryo development in vitro. However, microinjection is an empirical technology. The cellular survival after microinjection is mainly dependent on the operator, and an experienced operator should be trained for a long time, from several months to years. Optimizing the microinjection to be highly efficient and quickly learned should be helpful for new operators and some newly established laboratories. Here, we combined the tip pipette and piezo-assisted micromanipulator to microinject the oocyte and early embryos at different stages of mouse. The results showed that the survival rate after microinjection was more than 85% for cumulus-oocyte complex, germinal vesicle oocyte, two-cell, and four-cell embryos, and close to 100% for MII oocyte and zygotes. The high-rate survival of microinjection can save many experimental samples. Thus, it should be helpful in studying some rare animal models such as aging and conditional gene knockout mice. Furthermore, our protocol is much easier to learn for new operators, who can usually master the method proficiently after several training times. Therefore, we would like to publicly share this experience, which will help some novices master microinjection skillfully and save many laboratory animals.

11.
PLoS Genet ; 17(8): e1009724, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34398892

RESUMEN

Feeding is essential for animal survival and reproduction and is regulated by both internal states and external stimuli. However, little is known about how internal states influence the perception of external sensory cues that regulate feeding behavior. Here, we investigated the neuronal and molecular mechanisms behind nutritional state-mediated regulation of gustatory perception in control of feeding behavior in the brown planthopper and Drosophila. We found that feeding increases the expression of the cholecystokinin-like peptide, sulfakinin (SK), and the activity of a set of SK-expressing neurons. Starvation elevates the transcription of the sugar receptor Gr64f and SK negatively regulates the expression of Gr64f in both insects. Interestingly, we found that one of the two known SK receptors, CCKLR-17D3, is expressed by some of Gr64f-expressing neurons in the proboscis and proleg tarsi. Thus, we have identified SK as a neuropeptide signal in a neuronal circuitry that responds to food intake, and regulates feeding behavior by diminishing gustatory receptor gene expression and activity of sweet sensing GRNs. Our findings demonstrate one nutritional state-dependent pathway that modulates sweet perception and thereby feeding behavior, but our experiments cannot exclude further parallel pathways. Importantly, we show that the underlying mechanisms are conserved in the two distantly related insect species.


Asunto(s)
Conducta Alimentaria/fisiología , Percepción del Gusto/genética , Animales , Encéfalo/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Carbohidratos/fisiología , Colecistoquinina/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Conducta Alimentaria/psicología , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Hemípteros/genética , Hemípteros/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Receptores de Superficie Celular/genética , Inanición/metabolismo , Azúcares/metabolismo , Gusto/fisiología , Percepción del Gusto/fisiología
12.
J Assist Reprod Genet ; 38(6): 1373-1385, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33914207

RESUMEN

Insufficiency of oocyte activation impairs the subsequent embryo development in assisted reproductive technology (ART). Intracellular Ca2+ concentration ([Ca2+]i) oscillations switch the oocytes to resume the second meiosis and initiate embryonic development. However, the [Ca2+]i oscillation patterns in oocytes are poorly characterized. In this study, we investigated the effects of various factors, such as the oocytes age, pH, cumulus cells, in vitro or in vivo maturation, and ER stress on [Ca2+]i oscillation patterns and pronuclear formation after parthenogenetic activation of mouse oocytes. Our results showed that the oocytes released to the oviduct at 17 h post-human chorionic gonadotrophin (hCG) displayed a significantly stronger [Ca2+]i oscillation, including higher frequency, shorter cycle, and higher peak, compared with oocytes collected at earlier or later time points. [Ca2+]i oscillations in acidic conditions (pH 6.4 and 6.6) were significantly weaker than those in neutral and mildly alkaline conditions (pH from 6.8 to 7.6). In vitro-matured oocytes showed reduced frequency and peak of [Ca2+]i oscillations compared with those matured in vivo. In vitro-matured oocytes from the cumulus-oocyte complexes (COCs) showed a significantly higher frequency, shorter cycle, and higher peak compared with the denuded oocytes (DOs). Finally, endoplasmic reticulum stress (ER stress) severely affected the parameters of [Ca2+]i oscillations, including elongated cycles and lower frequency. The pronuclear (PN) rate of oocytes after parthenogenetic activation was correlated with [Ca2+]i oscillation pattern, decreasing with oocyte aging, cumulus removal, acidic pH, and increasing ER stress. These results provide fundamental but critical information for the mechanism of how these factors affect oocyte activation.


Asunto(s)
Desarrollo Embrionario/genética , Estrés del Retículo Endoplásmico/genética , Técnicas de Maduración In Vitro de los Oocitos , Oocitos/crecimiento & desarrollo , Animales , Gonadotropina Coriónica/genética , Células del Cúmulo/metabolismo , Femenino , Meiosis/genética , Ratones , Partenogénesis/genética , Embarazo
13.
Genetics ; 218(2)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33792683

RESUMEN

Break-induced replication (BIR) is essential for the repair of DNA double-strand breaks (DSBs) with single ends. DSBs-induced microhomology-mediated BIR (mmBIR) and template-switching can increase the risk of complex genome rearrangement. In addition, DSBs can also induce the multi-invasion-mediated DSB amplification. The mmBIR-induced genomic rearrangement has been identified in cancer cells and patients with rare diseases. However, when and how mmBIR is initiated have not been fully and deeply studied. Furthermore, it is not well understood about the conditions for initiation of multi-invasion-mediated DSB amplification. In the G2 phase oocyte of mouse, we identified a type of short-scale BIR (ssBIR) using the DNA replication indicator 5-ethynyl-2'-deoxyuridine (EdU). These ssBIRs could only be induced in the fully grown oocytes but not the growing oocytes. If the DSB oocytes were treated with Rad51 or Chek1/2 inhibitors, both EdU signals and DSB marker γH2A.X foci would decrease. In addition, the DNA polymerase inhibitor Aphidicolin could inhibit the ssBIR and another inhibitor ddATP could reduce the number of γH2A.X foci in the DSB oocytes. In conclusion, our results showed that DNA DSBs in the fully grown oocytes can initiate ssBIR and be amplified by Rad51 or DNA replication.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Animales , Afidicolina/farmacología , Células Cultivadas , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxiadenina/farmacología , Didesoxinucleótidos/farmacología , Femenino , Fase G2 , Indoles/farmacología , Ratones , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Oocitos , Cultivo Primario de Células , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/metabolismo , Tetrahidroisoquinolinas/farmacología
14.
Front Cell Dev Biol ; 9: 815599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35178404

RESUMEN

Cell division consists of nuclear division (mitosis for somatic cells and meiosis for germ cells) and cytoplasmic division (cytokinesis). Embryonic developments are highly programmed, and thus, each cellular event during early embryo development is stable. For mouse embryos, the first time of mitosis is completed about 22 h after fertilization. However, it remains unclear when the embryo completes its first cytokinesis. Here, we microinjected only one cell in the 2-cell stage mouse embryos with mRNA, which encodes green fluorescence protein (GFP). By monitoring the GFP protein transport dynamics between the two cells, we demonstrated that the first time of cytokinesis in mouse embryos is completed about 15 h after mitosis, namely 37 h after fertilization. In addition, our results indicate that the cytoplasmic protein transport between daughter cells is very effective, which relies on microtubules instead of microfilaments in 2-cell mouse embryos. These results should enrich people's understanding of the first cell division and cytoskeleton in mouse embryos and then learn more about the mechanisms of early embryo development in mammals.

15.
Front Genet ; 11: 573603, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193678

RESUMEN

Transmembrane channel-like (TMC) genes encode a family of evolutionarily conserved membrane proteins. Mutations in the TMC1 and TMC2 cause deafness in humans and mice. However, their functions in insects are is still not well known. Here we cloned three tmc genes, Nltmc3, Nltmc5, and Nltmc7 from brown planthoppers. The predicted amino acid sequences showed high identity with other species homologs and have the characteristic eight or nine transmembrane domains and TMC domain architecture. We detected these three genes in all developmental stages and examined tissues. Interestingly, we found Nltmc3 was highly expressed in the female reproductive organ especially in the oviduct. RNAi-mediated silencing of Nltmc3 substantially decreased the egg-laying number and impaired ovary development. Our results indicate that Nltmc3 has an essential role in the ovary development of brown planthoppers.

16.
J Genet Genomics ; 47(11): 659-671, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33184002

RESUMEN

One of the main causes of pregnancy failure and fetus abortion is oocyte aneuploidy, which is increased with maternal aging. Numerous possible causes of oocyte aneuploidy in aged women have been proposed, including cross-over formation defect, cohesin loss, spindle deformation, spindle assembly checkpoint malfunction, microtubule-kinetochore attachment failure, kinetochore mis-orientation, mitochondria dysfunction-induced increases in reactive oxygen species, protein over-acetylation, and DNA damage. However, it still needs to be answered if these aneuploidization factors have inherent relations, and how to prevent chromosome aneuploidy in aged oocytes. Epidemiologically, oocyte aneuploidy has been found to be weakly associated with higher homocysteine concentrations, obesity, ionizing radiation and even seasonality. In this review, we summarize the research progress and present an integrated view of oocyte aneuploidization.


Asunto(s)
Aneuploidia , Edad Materna , Meiosis/genética , Oocitos/patología , Anciano , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Daño del ADN/genética , Femenino , Humanos , Cinetocoros/metabolismo , Oocitos/crecimiento & desarrollo , Huso Acromático/genética , Huso Acromático/patología , Cohesinas
17.
PLoS One ; 15(10): e0240844, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33079963

RESUMEN

Cruciform DNA is a causing factor of genome instability and chromosomal translocation, however, most studies about cruciform DNA in mammalian cells were based on palindromic sequences containing plasmids and reports about endogenous cruciform DNA are rare. In this study we observed the dynamics of endogenous cruciform DNA in mouse growing oocytes using immunofluorescence labeling method. We found cruciform DNA foci exist in transcription active growing oocytes but not in transcription inactive fully grown oocytes and colocalized with Parp1 but not with DNA damage marker γH2A.X. By analyzing the Genotype-Tissue Expression data, we found cruciform DNA-mediated chromosomal translocation in human spermatocytes is associated with the specific DNA transcription in testis. When inhibiting the transcription with α-amanitin in mouse oocytes, we found oocyte cruciform DNA foci decreased significantly. In summary, we observed the endogenous cruciform DNA in growing oocytes and our results showed that the cruciform DNA formation is transcription-dependent.


Asunto(s)
ADN Cruciforme/metabolismo , Oocitos , Transcripción Genética/fisiología , Alfa-Amanitina/efectos adversos , Animales , Técnica del Anticuerpo Fluorescente/métodos , Histonas/metabolismo , Masculino , Ratones , Oocitos/citología , Oocitos/crecimiento & desarrollo , Oogénesis , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Espermatogénesis , Testículo/citología , Testículo/metabolismo
18.
FASEB J ; 34(9): 12634-12645, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32716582

RESUMEN

Meiosis initiation is a crucial step for the production of haploid gametes, which occurs from anterior to posterior in fetal ovaries. The asynchrony of the transition from mitosis to meiosis results in heterogeneity in the female germ cell populations, which limits the studies of meiosis initiation and progression at a higher resolution level. To dissect the process of meiosis initiation, we investigated the transcriptional profiles of 19 363 single germ cells collected from E12.5, E14.5, and E16.5 mouse fetal ovaries. Clustering analysis identified seven groups and defined dozens of corresponding transcription factors, providing a global view of cellular differentiation from primordial germ cells toward meiocytes. Furthermore, we explored the dynamics of gene expression within the developmental trajectory with special focus on the critical state of meiosis. We found that meiosis initiation occurs as early as E12.5 and the cluster of oogonia_4 is the critical state between mitosis and meiosis. Our data provide key insights into the transcriptome features of peri-meiotic female germ cells, which offers new information not only on meiosis initiation and progression but also on screening pathogenic mutations in meiosis-associated diseases.


Asunto(s)
Meiosis , Oogénesis , Oogonios/citología , Ovario/citología , Transcriptoma , Animales , Diferenciación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Mitosis , Análisis de Secuencia de ARN , Análisis de la Célula Individual
19.
Mol Reprod Dev ; 87(7): 800-807, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32558133

RESUMEN

The genome methylation is globally erased in early fetal germ cells, and it is gradually re-established during gametogenesis. The expression of some imprinted genes is regulated by the methylation status of CpG islands, while the exact time of DNA methylation establishment near maternal imprinted genes during oocyte growth is not well known. Here, growing oocytes were divided into three groups based on follicle diameters including the S-group (60-100 µm), M-group (100-140 µm), and L-group (140-180 µm). The fully grown germinal vesicle (GV)-stage and metaphase II (M2)-stage mature oocytes were also collected. These oocytes were used for single-cell bisulfite sequencing to detect the methylation status of CpG islands near imprinted genes on chromosome 7. The results showed that the CpG islands near Ndn, Magel2, Mkrn3, Peg12, and Igf2 were completely unmethylated, but those of Peg3, Snrpn, and Kcnq1ot1 were hypermethylated in MII-stage oocytes. The methylation of CpG islands near different maternal imprinted genes occurred asynchronously, being completed in later-stage growing oocytes, fully grown GV oocytes, and mature MII-stage oocytes, respectively. These results show that CpG islands near some maternally imprinted genes are not necessarily methylated, and that the establishment of methylation of other maternally imprinted genes is completed at different stages of oocyte growth, providing a novel understanding of the establishment of maternally imprinted genes in oocytes.

20.
Mol Immunol ; 120: 13-22, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32045770

RESUMEN

OBJECTIVE: To investigate the impact of death-associated protein kinase 1 (Dapk1) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) via p38MAPK/NF-κB pathway. METHODS: Dapk1+/+ and Dapk1-/- mice were randomized into Control, LPS, SB203580 (a p38MAPK pathway inhibitor) + LPS, and PDTC (a NF-κB pathway inhibitor) + LPS groups. Cell counts, lung wet to dry weight ratio (W/D weight ratio), as well as indicators of oxidative stress were determined followed by the detection with HE staining, ELISA, qRT-PCR, Western blotting and Immunofluorescence. Besides, to explore whether the effect of Dapk1 on ALI directly mediated via p38MAPK/NF-κB pathway, mice were injected with TC-DAPK 6 (a Dapk1 inhibitor) with or without SB203580/PDTC before LPS administration. RESULTS: LPS induced lung injury with increased lung W/D weight ratio, which could be partly reversed by SB203580 and PDTC in LPS-induced mice with activated p38MAPK/NF-κB pathway in lung tissues, especially in Dapk1-/- mice. SB203580 and PDTC reduced total cells and neutrophils in BALF in LPS-induced mice, accompanying with decreased levels of TNF-α, IL-6, MPO, LPO and MDA and the expressions of beclin-1, Atg5 and LC3II, but with the up-regulated activities of SOD and GSH-Px, as well as p62 protein expression. Besides, TC-DAPK 6 aggravated the pathologic injury in LPS-induced ALI with more serious inflammatory response, oxidative stress and autophagy as well as the activated p38MAPK/NF-κB pathway, which were reversed by SB203580 or PDTC. CONCLUSION: Dapk1 improved oxidative stress, inhibited autophagy, and reduce inflammatory response of LPS-induced ALI mice by inhibiting p38MAPK/NF-κB pathway.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Animales , Autofagia , Proteínas Quinasas Asociadas a Muerte Celular/deficiencia , Proteínas Quinasas Asociadas a Muerte Celular/genética , Imidazoles/farmacología , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Estrés Oxidativo , Piridinas/farmacología , Pirrolidinas/farmacología , Transducción de Señal/efectos de los fármacos , Tiocarbamatos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...