Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 20(3): 845-857, 2025 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38886957

RESUMEN

JOURNAL/nrgr/04.03/01300535-202503000-00029/figure1/v/2024-06-17T092413Z/r/image-tiff It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke. Indeed, previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue. Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke, but its specific role and mechanism are currently unclear. To simulate stroke in vivo, a middle cerebral artery occlusion rat model was established, with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke. We found that in the early stage (within 24 hours) of ischemic stroke, neutrophils produced a large amount of hypochlorous acid, while in the recovery phase (10 days after stroke), microglia were activated and produced a small amount of hypochlorous acid. Further, in acute stroke in rats, hypochlorous acid production was prevented using a hypochlorous acid scavenger, taurine, or myeloperoxidase inhibitor, 4-aminobenzoic acid hydrazide. Our results showed that high levels of hypochlorous acid (200 µM) induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation. However, in the recovery phase of the middle cerebral artery occlusion model, a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes. This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury. Lower levels of hypochlorous acid (5 and 100 µM) promoted nuclear translocation of ß-catenin. By transfection of single-site mutation plasmids, we found that hypochlorous acid induced chlorination of the ß-catenin tyrosine 30 residue, which promoted nuclear translocation. Altogether, our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.

2.
Neural Regen Res ; 18(5): 1040-1045, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36254990

RESUMEN

Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In this study, we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery. We found that succinate levels increased in serum and brain tissue (cortex and hippocampus) after ischemia/reperfusion injury. Oxygen-glucose deprivation and reoxygenation stimulated primary neural stem cells to produce abundant succinate. Succinate can be converted into diethyl succinate in cells. Exogenous diethyl succinate inhibited the proliferation of mouse-derived C17.2 neural stem cells and increased the infarct volume in the rat model of cerebral ischemia/reperfusion injury. Exogenous diethyl succinate also increased the succinylation of the Rho family GTPase Cdc42 but repressed Cdc42 GTPase activity in C17.2 cells. Increasing Cdc42 succinylation by knockdown of the desuccinylase Sirt5 also inhibited Cdc42 GTPase activity in C17.2 cells. Our findings suggest that ischemic accumulation of succinate decreases Cdc42 GTPase activity by induction of Cdc42 succinylation, which inhibits the proliferation of neural stem cells and aggravates cerebral ischemia/reperfusion injury.

3.
Brain Res Bull ; 170: 254-263, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33647420

RESUMEN

The deacetylase SIRT1 has been reported to play a critical role in regulating neurogenesis, which may be an adaptive processes contributing to recovery after stroke. Our previous work showed that the antioxidant capacity of Momordica charantia polysaccharides (MCPs) could protect against cerebral ischemia/reperfusion (I/R) after stroke. However, whether the protective effect of MCPs on I/R injury is related to neural stem cell (NSC) proliferation remains unclear. In the present study, we designed invivo and invitro experiments to elucidate the underlying mechanisms by which MCPs promote endogenous NSC proliferation during cerebral I/R. Invivo results showed that MCPs rescued the memory and learning abilities of rats after I/R damage and enhanced NSC proliferation in the rat subventricular zone (SVZ) and subgrannular zone (SGZ) during I/R. Invitro experiments demonstrated that MCPs could stimulate the proliferation of C17.2 cells under oxygen-glucose deprivation (OGD) conditions. Further studies revealed that the proliferation-promoting mechanism of MCPs relied on increasing the activity of SIRT1, decreasing the level of acetylation of ß-catenin in the cytoplasm, and then triggering the translocation of ß-catenin into the nucleus. These data provide experimental evidence that the up-regulation of SIRT1 activity by MCPs led to an increased cytoplasmic deacetylation of ß-catenin, which promoted translocation of ß-catenin to the nucleus to participate in the signaling pathway involved in NSC proliferation. The present study reveals that MCPs function as a therapeutic drug to promote stroke recovery by increasing the activity of SIRT1, decreasing the level of acetylated ß-catenin, promoting the nuclear translocation of ß-catenin and thereby increasing endogenous NSC proliferation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Momordica charantia , Células-Madre Neurales/efectos de los fármacos , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Daño por Reperfusión/metabolismo , Sirtuina 1/metabolismo , Animales , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos
4.
Neuropharmacology ; 135: 11-21, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29510185

RESUMEN

It is well known that Wnt5a activation plays a pivotal role in brain injury and ß-arrestin2 induces c-Jun N-terminal kinase (JNK3) activation is involved in neuronal cell death. Nonetheless, the relationship between Wnt5a and JNK3 remains unexplored during cerebral ischemia/reperfusion (I/R). In the present study, we tested the hypothesis that Wnt5a-mediated JNK3 activation via the Wnt5a-Dvl-1-ß-arrestin2-JNK3 signaling pathway was correlated with I/R brain injury. We found that cerebral I/R could enhance the assembly of the Dvl-1-ß-arrestin2-JNK3 signaling module, Dvl-1 phosphorylation and JNK3 activation. Activated JNK3 could phosphorylate the transcription factor c-Jun, prompt caspase-3 activation and ultimately lead to neuronal cell death. To further explore specifically Wnt5a mediated JNK3 pathway activation in neuronal injury, we used Foxy-5 (a peptide that mimics the effects of Wnt5a) and Box5 (a Wnt5a antagonist) both in vitro and in vivo. AS-ß-arrestin2 (an antisense oligonucleotide against ß-arrestin2) and RRSLHL (a small peptide that competes with ß-arrestin2 for binding to JNK3) were applied to confirm the positive signal transduction effect of the Dvl-1-ß-arrestin2-JNK3 signaling module during cerebral I/R. Furthermore, Box5 and the RRSLHL peptide were found to play protective roles in neuronal death both in vivo global and focal cerebral I/R rat models and in vitro oxygen glucose deprivation (OGD) neural cells. In summary, our results indicate that Wnt5a-mediated JNK3 activation participates in I/R brain injury by targeting the Dvl-1-ß-arrestin2/JNK3 interaction. Our results also point to the possibility that disrupting Wnt5a-JNK3 signaling pathway may provide a new approach for stroke therapy.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Proteínas Dishevelled/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Neuroprotección , Daño por Reperfusión/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Wnt-5a/metabolismo , Arrestina beta 2/metabolismo , Animales , Región CA1 Hipocampal/citología , Muerte Celular/efectos de los fármacos , Masculino , Neuroprotección/efectos de los fármacos , Oligopéptidos/farmacología , Oligorribonucleótidos Antisentido/farmacología , Péptidos/farmacología , Fosforilación , Ratas , Daño por Reperfusión/patología , Proteína Wnt-5a/agonistas , Arrestina beta 2/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...