Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 621
Filtrar
1.
Genetica ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365431

RESUMEN

The auxin response factor (ARF) is a plant-specific transcription factor that regulates the expression of auxin response genes by binding directly to their promoters. They play an important role in the regulation of plant growth and development, as well as in the response to biotic and abiotic stresses. However, the identification and functional analysis of ARFs in Fagopyrum dibotrys are still unclear. In this study, a total of 26 FdARF genes were identified using bioinformatic methods. Their chromosomal location, gene structure, physical and chemical properties of their encoded protein, subcellular location, phylogenetic tree, conserved motifs and cis-acting elements in FdARF promoters were analyzed. The results showed that 26 FdARF genes were unevenly distributed on 8 chromosomes, with the largest distribution on chromosome 4 and the least distribution on chromosome 3. Most FdARF proteins are located in the nucleus, except for the proteins FdARF7 and FdARF21 located to the cytoplasm and nucleus, while FdARF14, FdARF16, and FdARF25 proteins are located outside the chloroplast and nucleus. According to phylogenetic analysis, 26 FdARF genes were divided into 6 subgroups. Duplication analysis indicates that the expansion of the FdARF gene family was derived from segmental duplication rather than tandem duplication. The prediction based on cis-elements of the promoter showed that 26 FdARF genes were rich in multiple stress response elements, suggesting that FdARFs may be involved in the response to abiotic stress. Expression profiling analysis showed that most of the FdARF genes were expressed in the roots, stems, leaves, and tubers of F. dibotrys, but their expression exhibits a certain degree of tissue specificity. qRT-PCR analysis revealed that most members of the FdARF gene were up- or down-regulated in response to abiotic stress. The results of this study expand our understanding of the functional role of FdARFs in response to abiotic stress and lay a theoretical foundation for further exploration of other functions of FdARF genes.

2.
Adv Sci (Weinh) ; : e2404067, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373352

RESUMEN

Phagocytosis of shed photoreceptor outer segments by the retinal pigment epithelium (RPE) is essential for retinal homeostasis. Dysregulation of the phagocytotic process is associated with irreversible retinal degenerative diseases. However, the molecular mechanisms underlying the phagocytic activity of RPE cells remain elusive. In an effort to uncover proteins orchestrating retinal function, the cylindromatosis (CYLD) deubiquitinase is identified as a critical regulator of photoreceptor outer segment phagocytosis. CYLD-deficient mice exhibit abnormal retinal structure and function. Mechanistically, CYLD interacts with enkurin domain containing protein 1 (ENKD1) and deubiquitinates ENKD1 at lysine residues K141 and K242. Deubiquitinated ENKD1 interacts with Ezrin, a membrane-cytoskeleton linker, and stimulates the microvillar localization of Ezrin, which is essential for the phagocytic activity of RPE cells. These findings thus reveal a crucial role for the CYLD-ENKD1-Ezrin axis in regulating retinal homeostasis and may have important implications for the prevention and treatment of retinal degenerative diseases.

3.
BMJ Open Qual ; 13(4)2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39357922

RESUMEN

BACKGROUND: Older people living in care homes are often frail and clinically complex. The Enhanced Health in Care Homes (EHCH) framework supports organisational and clinical strategies to deliver good care, promoting proactive person-centred care by whole system collaboration. We evaluate the impact of a new role, the Extensivist, in the delivery of EHCH for older people living in care homes. AIMS: To evaluate implementation processes and the clinical utility of the Extensivist in older people care homes in the London borough of Southwark. METHODS: The Extensivist (Band 8a Advanced Nurse Specialist skilled in frail older people) was embedded within the care home general practitioners (GP) service for a 2-year pilot (2019-2021). Implementation processes were evaluated. Impact of the Extensivist role was evaluated by the number of Comprehensive Geriatric Assessment (CGA) completed, interventions and other clinical activity performed as well as qualitative case studies and semistructured feedback from care home workers and professionals. RESULTS: The Extensivist feasibly delivered CGA and implemented intervention plans. The role iteratively developed to support wider aspects of care including advance care planning (ACP) and training. Challenges included building trust, the time-consuming nature of CGA, ACP and coordinated communication. Case studies and semistructured feedback indicated the role was considered valuable in the delivery of clinical care, supporting residents, families, care homes and GPs and as a resource for education for care home workers. CONCLUSIONS: The Extensivist is a valuable resource and a linchpin in the delivery of EHCH framework in care homes for older adults in Southwark. Further evaluations to assess reproducibility in other areas of the UK are warranted.


Asunto(s)
Hogares para Ancianos , Humanos , Anciano , Hogares para Ancianos/estadística & datos numéricos , Hogares para Ancianos/normas , Londres , Casas de Salud/estadística & datos numéricos , Casas de Salud/organización & administración , Casas de Salud/normas , Evaluación Geriátrica/métodos , Evaluación Geriátrica/estadística & datos numéricos , Anciano de 80 o más Años , Investigación Cualitativa , Femenino , Atención Dirigida al Paciente/normas , Atención Dirigida al Paciente/estadística & datos numéricos , Masculino , Mejoramiento de la Calidad
4.
Anal Chim Acta ; 1329: 343259, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39396316

RESUMEN

BACKGROUND: Foodborne pathogens such as Escherichia coli and Staphylococcus aureus commonly found in food and water sources are the leading causes of foodborne disease outbreaks, which have become a worldwide issue that can lead to serious health problems and socio-economic losses. Therefore, the development of accurate and timely detection methods for these bacteria is essential to safeguard public health and food safety. However, due to the drawbacks of conventional detection methods such as complex operation, high cost, low specificity and sensitivity, developing efficient and sensitive techniques remains a challenge. RESULTS: In this study, we developed a fluorescent biosensor based on bacteria-instructed atom transfer radical polymerization (ATRP) for ultrasensitive and specific detection of foodborne pathogenic bacteria. This approach first attaches initiators of ATRP to the surface of carboxylated Fe3O4 magnetic beads via transition metal and subsequently utilizes the distinctive copper-binding redox pathway of bacteria to reduce Cu(II) to Cu(I), which activates the surface-initiated polymerization for in situ growth of fluorescent polymer. This signal amplification strategy significantly enhanced the sensitivity of fluorescence analysis performance. Under optimal conditions, there was a perfect linear correlation between the fluorescence signal intensity and the logarithm of the concentrations of S. aureus and E. coli over the range from 103 CFU/mL to 108 CFU/mL, with the detection limits down to 102 CFU/mL for both. SIGNIFICANCE: The fluorescent biosensor provides an efficient, sensitive and stable solution for the direct detection of S. aureus/E. coli, confirming the feasibility of the bacterial-instructed ATRP reaction as a signal amplification strategy. This detection method does not require the help of any external stimuli or complex equipment. Moreover, it shows great potential for application in detecting pathogenic bacteria in complex food samples.


Asunto(s)
Técnicas Biosensibles , Escherichia coli , Polímeros , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Polímeros/química , Técnicas Biosensibles/métodos , Radicales Libres/química , Límite de Detección , Polimerizacion
5.
Nat Plants ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394508

RESUMEN

Modern rose (Rosa hybrida) is a recently formed interspecific hybrid and has become one of the most important and widely cultivated ornamentals. Here we report the haplotype-resolved chromosome-scale genome assembly of the tetraploid R. hybrida 'Samantha' ('JACmantha') and a genome variation map of 233 Rosa accessions involving various wild species, and old and modern cultivars. Homologous chromosomes of 'Samantha' exhibit frequent homoeologous exchanges. Population genomic and genomic composition analyses reveal the contributions of wild Rosa species to modern roses and highlight that R. odorata and its derived cultivars are important contributors to modern roses, much like R. chinensis 'Old Blush'. Furthermore, selective sweeps during modern rose breeding associated with major agronomic traits, including continuous and recurrent flowering, double flower, flower senescence and disease resistance, are identified. This study provides insights into the genetic basis of modern rose origin and breeding history, and offers unprecedented genomic resources for rose improvement.

6.
Int Immunopharmacol ; 142(Pt A): 113077, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39265353

RESUMEN

Acute kidney injury (AKI) is an important clinical syndrome characterised by a sudden decline in renal function, often accompanied by renal inflammation and tubular epithelial cell damage. It has been reported that inhibiting DNA methylation significantly suppress the progression of AKI. In the current study, we investigate the effect of the DNA methyltransferase (DNMT) inhibitor RG108 in cisplatin- and hypoxia-reoxygenation-induced AKI. The expression of kidney injury molecules and inflammatory factors was examined by immunofluorescence, Western blotting and Real-time PCR. The results demonstrated that RG108 treatment significantly reduced kidney inflammation and injury. Furthermore, RNA-seq analysis was performed to reveal the regulatory mechanism of RG108 in AKI. The expression of the FOS and JUN genes, which are downstream of the MAPK pathway, were significant increased in AKI. Meanwhile, the expression of FOS and JUN were both inhibited by RG108, which is similar to what we found treatment with a specific JNK inhibitor and a specific p38 MAPK inhibitor, and thus attenuated renal inflammation and injury. In conclusion, we suggest that RG108 inhibits P38 MAPK/FOS and JNK/JUN pathways and attenuates renal injury and inflammatory responses. In these results, RG108 may become a novel MAPK pathway inhibitor and a clinical candidate for the treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Humanos , Masculino , Ratones , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Ftalimidas , Triptófano/análogos & derivados
7.
Chem Biol Interact ; 403: 111238, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39265716

RESUMEN

Disordered glucose and lipid metabolism, coupled with disturbed mitochondrial bioenergetics, are pivotal in the initiation and development of diabetic kidney disease (DKD). While the essential role of telomerase reverse transcriptase (TERT) in regulating mitochondrial function in the cardiovascular system has been recognized, its specific function in maintaining mitochondrial homeostasis in DKD remains unclear. This study aimed to explore how TERT regulates mitochondrial function and the underlying mechanisms. In vitro, human renal proximal tubular HK-2 cells exposed to high glucose/high fat (HG/HF) presented significant downregulation of TERT and AMPK dephosphorylation. This led to decreased ATP production, altered NAD+/NADH ratios, reduced mitochondrial complex activities, increased mitochondrial dysfunction, lipid accumulation, and reactive oxygen species (ROS) production. Knockdown of TERT (si-TERT) further exacerbated mitochondrial dysfunction, decreased mitochondrial membrane potential, and lowered levels of cellular oxidative phosphorylation and glycolysis, as determined via a Seahorse X24 flux analyzer. Conversely, mitochondrial dysfunction was significantly alleviated after pcDNA-TERT plasmid transfection and adeno-associated virus (AAV) 9-TERT gene therapy in vivo. Notably, treatment with an AMPK inhibitor, activator, and si-PGC-1a (peroxisome proliferator-activated receptor γ coactivator-1α), resulted in mitochondrial dysfunction and decreased expression of genes related to energy metabolism and mitochondrial biogenesis. Our findings reveal that TERT protects mitochondrial function and homeostasis by partially activating the AMPK/PGC-1a signaling pathway. These results establish a crucial foundation for understanding TERT's critical role inmitochondrial regulation and its protective effect on DKD.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Nefropatías Diabéticas , Metabolismo Energético , Homeostasis , Mitocondrias , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Telomerasa , Telomerasa/metabolismo , Telomerasa/genética , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Masculino , Ratones , Glucosa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL
8.
Plants (Basel) ; 13(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39273848

RESUMEN

Medicago truncatula is a key model plant for studying legume plants, particularly alfalfa (Medicago sativa), due to its well-defined genetic background. Plant-specific GASA (Gibberellic Acid Stimulated Arabidopsis) genes play various roles in plant growth and development, abiotic stress, and hormone responses. However, limited information is available on GASA research in Medicago. In this study, 26 MtGASAs were identified and analyzed for its structure, evolution, and expressions. Sequence alignments and phylogeny revealed that 26 MtGASAs containing conserved GASA domains were classified into three clades. The chromosomal locations and gene synteny revealed segmental and tandem repetition evolution. Analysis of cis-regulatory elements indicates that family members likely influence various hormone signaling pathways and stress-related mechanisms. Moreover, the RNA-seq and qRT-PCR analyses revealed that 26 MtGASAs were extensively involved in abiotic stresses and hormone responses. Notably, seven MtGASA genes (MtGASA1, 10, 12, 17, 23, 25 and 26) were all dramatically activated by NaCl and Mannitol treatments, and four MtGASAs (MtGASA7, 10, 23 and 24) were significant activated by GA3, PBZ, ABA, and MeJA treatments. Collectively, this study is the first to identify and describe GASA genes in Medicago on a genome-wide scale. The results establish a basis for functional characterization, showing that these proteins are essential in responding to various abiotic stresses and hormonal signals.

9.
Plant J ; 120(1): 302-317, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39180235

RESUMEN

Hypersensitive response-programmed cell death (HR-PCD) regulated by Ca2+ signal is considered the major regulator of resistance against Puccinia triticina (Pt.) infection in wheat. In this study, the bread wheat variety Thatcher and its near-isogenic line with the leaf rust resistance locus Lr26 were infected with the Pt. race 260 to obtain the compatible and incompatible combinations, respectively. The expression of translationally controlled tumor protein (TaTCTP) was upregulated upon infection with Pt., through a Ca2+-dependent mechanism in the incompatible combination. The knockdown of TaTCTP markedly increased the area of dying cell and the number of Pt. haustorial mother cells (HMCs) at the infection sites, whereas plants overexpressing the gene exhibited enhanced resistance. The interaction between TaTCTP and calcineurin B-like protein-interacting protein kinase 23 (TaCIPK23) was also investigated, and the interaction was found occurred in the endoplasmic reticulum. TaCIPK23 phosphorylated TaTCTP in vitro. The expression of a phospho-mimic TaTCTP mutant in Nicotiana benthamiana promoted HR-like cell death. Silencing TaCIPK23 or TaCIPK23/TaTCTP co-silencing resulted in the same results as silencing TaTCTP. This suggested that TaTCTP is a novel phosphorylation target of TaCIPK23, and both participate in the resistance of wheat to Pt. in the same pathway.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Proteínas de Plantas , Puccinia , Triticum , Triticum/genética , Triticum/microbiología , Triticum/metabolismo , Triticum/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Puccinia/fisiología , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/metabolismo , Nicotiana/inmunología , Regulación de la Expresión Génica de las Plantas , Fosforilación , Proteína Tumoral Controlada Traslacionalmente 1
10.
BMC Ophthalmol ; 24(1): 348, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148060

RESUMEN

BACKGROUND: To investigate the peripapillary retinal nerve fibre layer (RNFL) thickness changes and analyse factors associated with visual recovery of G11778A Leber hereditary optic neuropathy (LHON) patients. METHODS: Patients diagnosed with G11778A LHON between July 2017 and December 2020 in Tongji hospital were included in this follow-up study. Patients were grouped according to disease duration. Variations in the RNFL thickness in each quadrant at different disease stages were characterised using optical coherence tomography. According to the absence or presence of significant visual acuity improvements, LHON patients of disease duration ≥ 6 months were divided into two groups. A bivariate logistic regression model was constructed to analyse the potential factors associated with spontaneous visual recovery. RESULTS: This study included 56 G11778A LHON patients (112 eyes) and 25 healthy controls (50 eyes), with a mean follow-up of 5.25 ± 1.42 months. All quadrants and mean RNFL thicknesses of LHON patients first increased and then decreased, except for the temporal RNFL. As the disease progressed, RNFL thinning slowed; however, gradual RNFL thinning occurred. Logistic regression revealed that baseline best corrected visual acuity was related to spontaneous visual recovery of LHON patients with disease duration ≥ 6 months. CONCLUSION: The pattern of RNFL involvement could be helpful in the differential diagnosis of LHON and other optic neuropathies. LHON patients with better vision are more likely to experience some degree of spontaneous visual acuity recovery after the subacute phase.


Asunto(s)
Fibras Nerviosas , Atrofia Óptica Hereditaria de Leber , Células Ganglionares de la Retina , Tomografía de Coherencia Óptica , Agudeza Visual , Humanos , Atrofia Óptica Hereditaria de Leber/fisiopatología , Atrofia Óptica Hereditaria de Leber/diagnóstico , Masculino , Femenino , Fibras Nerviosas/patología , Células Ganglionares de la Retina/patología , Tomografía de Coherencia Óptica/métodos , Estudios de Seguimiento , Adulto , Agudeza Visual/fisiología , Adulto Joven , Disco Óptico/patología , Disco Óptico/diagnóstico por imagen , Adolescente , Persona de Mediana Edad , Estudios Retrospectivos , Campos Visuales/fisiología
11.
Plant Physiol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189546

RESUMEN

Leaf rust, caused by Puccinia triticina Erikss. (Pt), is a serious disease threatening wheat (Triticum aestivum L.) production worldwide. Hydrogen peroxide (H2O2) triggered by Pt infection in resistant wheat cultivars cause oxidative damage directly to biomolecules or is activated by calcium signaling and mediates the hypersensitive response. Calmodulin-binding transcriptional activator 4 (TaCAMTA4) has been reported to negatively regulate wheat resistance to Pt. In this study, we found that TaCAMTA4 was induced by Pt race 165 in its compatible host harboring the Pt resistant locus Lr26, TcLr26, and silencing of TaCAMTA4 increased local H2O2 accumulation and Pt resistance. Subcellular localization and autoactivation tests revealed that TaCAMTA4 is a nucleus-localized transcriptional activator. Furthermore, four DNA motifs recognized by TaCAMTA4 were identified by transcription factor-centered Y1H. Through analyzing the transcriptome database, four gene clusters were identified, each containing a different DNA motif on each promoter. Among them, the expression of catalase 1 (TaCAT1) with motif-1 was highly induced in the compatible interaction and was decreased when TaCAMTA4 was silenced. The results of EMSA, ChIP-qPCR, and RT-qPCR further showed that TaCAMTA4 directly bound motif-1 in the TaCAT1 promoter. Furthermore, silencing of TaCAT1 resulted in enhanced resistance to Pt and increased local H2O2 accumulation in wheat, which is consistent with that of TaCAMTA4. Since CAMTAs are Ca2+ sensors and catalases catalyze the decomposition of H2O2, we hypothesize that Ca2+ regulates the plant immune networks that are controlled by H2O2 and implicate a potential mechanism for Pt to suppress resistance by inducing the expression of the TaCAMTA4-TaCAT1 module, which consequently enhances H2O2 scavenging and attenuates H2O2-dependent resistance.

12.
Nat Mater ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134648

RESUMEN

Naive pluripotent stem cells have the highest developmental potential but their in vivo existence in the blastocyst is transient. Here we report a blastocyst motif substrate for the in vitro reversion of mouse and human pluripotent stem cells to a naive state. The substrate features randomly varied microstructures, which we call motifs, mimicking the geometry of the blastocyst. Motifs representing mouse-blastocyst-scaled curvature ranging between 15 and 62 mm-1 were the most efficient in promoting reversion to naivety, as determined by time-resolved correlative analysis. In these substrates, apical constriction enhances E-cadherin/RAC1 signalling and activates the mechanosensitive nuclear transducer YAP, promoting the histone modification of pluripotency genes. This results in enhanced levels of pluripotency transcription factor NANOG, which persist even after cells are removed from the substrate. Pluripotent stem cells cultured in blastocyst motif substrates display a higher development potential in generating embryoid bodies and teratomas. These findings shed light on naivety-promoting substrate design and their large-scale implementation.

13.
Front Oncol ; 14: 1394427, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035734

RESUMEN

Background: Cervical cancer (CC) remains the second leading cause of cancer-related death in women, and the ability to accurately anticipate the presence or absence of lymphovascular space invasion (LVSI) is critical to maintaining optimal patient outcomes. The objective of this study was to establish and verify an MRI radiomics-based model to predict the status of LVSI in patients with operable CC. Methods: The current study performed a retrospective analysis, with 86 patients in the training cohort and 38 patients in the testing group, specifically focusing on patients with CC. The radiomics feature extraction process included ADC, T2WI-SPAIR, and T2WI sequences. The training group data were used for the initial radionics-based model building, and the model predictive performance was subsequently validated using data from patients recruited in the experimental group. Results: The development of the radiomics scoring model has been completed with 17 selected features. The study found several risk factors associated with LVSI. These risk factors included moderate tumor differentiation (P = 0.005), poor tumor differentiation (P = 0.001), and elevated combined sequence-based radiomics scores (P = 0.001). Radiomics scores based on predictive model, combined sequences, ADC, T2WI-SPAIR, and T2WI exhibited AUCs of 0.897, 0.839, 0.815, 0.698, and 0.739 in the training cohort, respectively, with corresponding testing cohort values of 0.833, 0.833, 0.683, 0.692, and 0.725. Excellent consistency was shown by the calibration curve analysis, which showed a higher degree of agreement between the actual and anticipated LVSI status. Moreover, the decision curve analysis outcomes demonstrated the medical application of this prediction model. Conclusion: This investigation indicated that the MRI radiomics model was successfully developed and validated to predict operable CC patient LVSI status, attaining high overall diagnostic accuracy. However, further external validation and more deeper analysis on a larger sample size are still needed.

14.
Small ; : e2404622, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058229

RESUMEN

Inspired by natural photosynthesis, the visible-light-driven Z-scheme system is very effective and promising for boosting photocatalytic hydrogen production and pollutant degradation. Here, a synergistic Z-scheme photocatalyst is constructed by coupling ReS2 nanosheet and ZnIn2S4 nanoflower and the experimental evidence for this direct Z-scheme heterostructure is provided by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance. Consequently, such a unique nanostructure makes this Z-scheme heterostructure exhibit 23.7 times higher photocatalytic hydrogen production than that of ZnIn2S4 nanoflower. Moreover, the ZnIn2S4/ReS2 photocatalyst is also very stable for photocatalytic hydrogen evolution, almost without activity decay even storing for two weeks. Besides, this Z-scheme heterostructure also exhibits superior photocatalytic degradation rates of methylene blue (1.7 × 10-2 min-1) and mitoxantrone (4.2 × 10-3 min-1) than that of ZnIn2S4 photocatalyst. The ultraviolet-visible absorption spectra, transient photocurrent spectra, open-circuit potential measurement, and electrochemical impedance spectroscopy reveal that the superior photocatalytic performance of ZnIn2S4/ReS2 heterostructure is mostly attributed to its broad and strong visible-light absorption, effective separation of charge carrier, and improved redox ability. This work provides a promising nanostructure design of a visible-light-driven Z-scheme heterostructure to simultaneously promote photocatalytic reduction and oxidation activity.

15.
PNAS Nexus ; 3(6): pgae202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840799

RESUMEN

To assess cellular behavior within heterogeneous tissues, such as bone, skin, and nerves, scaffolds with biophysical gradients are required to adequately replicate the in vivo interaction between cells and their native microenvironment. In this study, we introduce a strategy for depositing ultrathin films comprised of laminin-111 with precisely controlled biophysical gradients onto planar substrates using the Langmuir-Blodgett (LB) technique. The gradient is created by controlled desynchronization of the barrier compression and substrate withdrawal speed during the LB deposition process. Characterization of the films was performed using techniques such as atomic force microscopy and confocal fluorescence microscopy, enabling the comprehensive analysis of biophysical parameters along the gradient direction. Furthermore, human adipose-derived stem cells were seeded onto the gradient films to investigate the influence of protein density on cell attachment, showing that the distribution of the cells can be modulated by the arrangement of the laminin at the air-water interface. The presented approach not only allowed us to gain insights into the intricate interplay between biophysical cues and cell behavior within complex tissue environments, but it is also suited as a screening approach to determine optimal protein concentrations to achieve a target cellular output.

16.
Math Biosci Eng ; 21(5): 6077-6096, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38872570

RESUMEN

Due to the complexity of the driving environment and the dynamics of the behavior of traffic participants, self-driving in dense traffic flow is very challenging. Traditional methods usually rely on predefined rules, which are difficult to adapt to various driving scenarios. Deep reinforcement learning (DRL) shows advantages over rule-based methods in complex self-driving environments, demonstrating the great potential of intelligent decision-making. However, one of the problems of DRL is the inefficiency of exploration; typically, it requires a lot of trial and error to learn the optimal policy, which leads to its slow learning rate and makes it difficult for the agent to learn well-performing decision-making policies in self-driving scenarios. Inspired by the outstanding performance of supervised learning in classification tasks, we propose a self-driving intelligent control method that combines human driving experience and adaptive sampling supervised actor-critic algorithm. Unlike traditional DRL, we modified the learning process of the policy network by combining supervised learning and DRL and adding human driving experience to the learning samples to better guide the self-driving vehicle to learn the optimal policy through human driving experience and real-time human guidance. In addition, in order to make the agent learn more efficiently, we introduced real-time human guidance in its learning process, and an adaptive balanced sampling method was designed for improving the sampling performance. We also designed the reward function in detail for different evaluation indexes such as traffic efficiency, which further guides the agent to learn the self-driving intelligent control policy in a better way. The experimental results show that the method is able to control vehicles in complex traffic environments for self-driving tasks and exhibits better performance than other DRL methods.

17.
Cancer Med ; 13(12): e7353, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888362

RESUMEN

INTRODUCTION: Penile cancer (PC) is a lethal malignancy with no effective prognostic biomarker. We aim to investigate associations between trajectories of squamous cell carcinoma antigen (SCC-A) and patient outcomes after chemotherapy based on paclitaxel, ifosfamid, and cisplatin (TIP) regimen. METHODS: Consecutive AJCC staging III/IV PC patients who received TIP chemotherapy and repeated SCC-A measurements in 2014-2022 were analyzed. Latent class growth mixed (LCGM) models were employed to characterize patients' serum SCC-A trajectories. Patient survival, and clinical and pathological tumor responses were compared. Inverse probability treatment weighting was used to adjust confounding factors. RESULTS: Eighty patients were included. LCGM models identified two distinct trajectories of SCC-A: low-stable (40%; n = 32) and high-decline (60%; n = 48). Overall survival (HR [95% CI]: 3.60 [1.23-10.53], p = 0.019), progression-free survival (HR [95% CI]: 11.33 [3.19-40.3], p < 0.001), objective response rate (37.5% vs. 62.5% p = 0.028), disease control rate (60.4% vs. 96.9% p < 0.00), and pathological complete response rate (21.2% vs. 51.9%, p = 0.014) were significantly worse in the high-decline arm. CONCLUSION: PC patients' SCC-A change rate was associated with tumor response and patient survival after TIP chemotherapy. SCC-A might assist tumor monitoring after systemic therapies.


Asunto(s)
Antígenos de Neoplasias , Protocolos de Quimioterapia Combinada Antineoplásica , Cisplatino , Paclitaxel , Neoplasias del Pene , Serpinas , Humanos , Masculino , Neoplasias del Pene/tratamiento farmacológico , Neoplasias del Pene/sangre , Neoplasias del Pene/mortalidad , Neoplasias del Pene/patología , Persona de Mediana Edad , Antígenos de Neoplasias/sangre , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Paclitaxel/administración & dosificación , Paclitaxel/uso terapéutico , Cisplatino/uso terapéutico , Cisplatino/administración & dosificación , Serpinas/sangre , Anciano , Estadificación de Neoplasias , Biomarcadores de Tumor/sangre , Pronóstico , Estudios Retrospectivos , Adulto
18.
CNS Neurosci Ther ; 30(6): e14764, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828629

RESUMEN

AIMS: Neuropathic pain is a common chronic pain disorder, which is largely attributed to spinal central sensitization. Calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) activation in the spinal dorsal horn (SDH) is a major contributor to spinal sensitization. However, the exact way that CaMKIIα-positive (CaMKIIα+) neurons in the SDH induce neuropathic pain is still unclear. This study aimed to explore the role of spinal CaMKIIα+ neurons in neuropathic pain caused by chronic constriction injury (CCI) and investigate the potential epigenetic mechanisms involved in CaMKIIα+ neuron activation. METHODS: CCI-induced neuropathic pain mice model, Sirt1loxP/loxP mice, and chemogenetic virus were used to investigate whether the activation of spinal CaMKIIα+ neurons is involved in neuropathic pain and its involved mechanism. Transcriptome sequence, western blotting, qRT-PCR, and immunofluorescence analysis were performed to assay the expression of related molecules and activation of neurons. Co-immunoprecipitation was used to observe the binding relationship of protein. Chromatin immunoprecipitation (ChIP)-PCR was applied to analyze the acetylation of histone H3 in the Scn3a promoter region. RESULTS: The expression of sodium channel Nav1.3 was increased and the expression of SIRT1 was decreased in the spinal CaMKIIα+ neurons of CCI mice. CaMKIIα neurons became overactive after CCI, and inhibiting their activation relieved CCI-induced pain. Overexpression of SIRT1 reversed the increase of Nav1.3 and alleviated pain, while knockdown of SIRT1 or overexpression of Nav1.3 promoted CaMKIIα+ neuron activation and induced pain. By knocking down spinal SIRT1, the acetylation of histone H3 in the Scn3a (encoding Nav1.3) promoter region was increased, leading to an increased expression of Nav1.3. CONCLUSION: The findings suggest that an aberrant reduction of spinal SIRT1 after nerve injury epigenetically increases Nav1.3, subsequently activating CaMKIIα+ neurons and causing neuropathic pain.


Asunto(s)
Neuralgia , Neuronas , Sirtuina 1 , Animales , Masculino , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Ratones Endogámicos C57BL , Neuralgia/metabolismo , Neuronas/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/genética , Médula Espinal/metabolismo
19.
Med Res Rev ; 44(6): 2774-2792, 2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-38922930

RESUMEN

Breast cancer (BC) is a highly heterogeneous disease, and the presence of germline breast cancer gene mutation (gBRCAm) is associated with a poor prognosis. Triple-negative breast cancer (TNBC) is a BC subtype, characterized by the absence of hormone and growth factor receptor expression, making therapeutic decisions difficult. Defects in the DNA damage response pathway due to mutation in breast cancer genes (BRCA 1/2) lead to homologous recombination deficiency (HRD). However, in HRD conditions, poly (adenosine diphosphate-ribose) polymerase (PARP) proteins repair DNA damage and lead to tumor cell survival. Biological understanding of HRD leads to the development of PARP inhibitors (PARPi), which trap PARP proteins and cause genomic instability and tumor cell lysis. HRD assessment can be an important biomarker in identifying gBRCAm patients with BC who could benefit from PARPi therapy. HRD can be identified by homologous recombination repair (HRR) gene-based assays, genomic-scarring assays and mutational signatures, transcription and protein expression profiles, and functional assays. However, gold standard methodologies that are robust and reliable to assess HRD are not available currently. Hence, there is a pressing need to develop accurate biomarkers identifying HRD tumors to guide targeted therapies such as PARPi in patients with BC. HRD assessment has shown fruitful outcomes in chemotherapy studies and preliminary evidence on PARPi intervention as monotherapy and combination therapy in HRD-stratified patients. Furthermore, ongoing trials are exploring the potential of PARPi in BC and clinically complex TNBC settings, where HRD testing is used as an adjunct to stratify patients based on BRCA mutations.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Femenino , Reparación del ADN por Recombinación
20.
Food Chem ; 457: 140084, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905842

RESUMEN

This study investigated the interaction mechanism between chlorogenic acid (CA) and soy protein isolate (SPI) through multi-spectroscopic and computational docking and analyzed the changes in its functional properties. The results showed that the interaction of CA with SPI changed its UV and fluorescence absorption, and the fluorescence quenching mechanism was static quenching. At the same time, the secondary structure of the protein was altered, with a reduction in α-helix, ß-sheet and ß-turn. Computer docking analysis showed that CA binds to SPI through hydrophobic interactions, van der Waals forces, and hydrogen bonding to form a more compact complex. In addition, the dose-dependent enhancement of CA improved the functional properties of the complexes, including foaming, emulsification, and antioxidant properties. This study systematically investigated the mechanism of interaction between CA and SPI, which supports further research on food complex systems containing CA and SPI, as well as the application of the complex.


Asunto(s)
Ácido Clorogénico , Simulación del Acoplamiento Molecular , Proteínas de Soja , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Ácido Clorogénico/química , Interacciones Hidrofóbicas e Hidrofílicas , Enlace de Hidrógeno , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia , Unión Proteica , Antioxidantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...