Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 614(7947): 343-348, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697821

RESUMEN

Transcriptional enhancer elements are responsible for orchestrating the temporal and spatial control over gene expression that is crucial for programming cell identity during development1-3. Here we describe a novel enhancer element that is important for regulating the expression of Prox1 in lymphatic endothelial cells. This evolutionarily conserved enhancer is bound by key lymphatic transcriptional regulators including GATA2, FOXC2, NFATC1 and PROX1. Genome editing of the enhancer to remove five nucleotides encompassing the GATA2-binding site resulted in perinatal death of homozygous mutant mice due to profound lymphatic vascular defects. Lymphatic endothelial cells in enhancer mutant mice exhibited reduced expression of genes characteristic of lymphatic endothelial cell identity and increased expression of genes characteristic of haemogenic endothelium, and acquired the capacity to generate haematopoietic cells. These data not only reveal a transcriptional enhancer element important for regulating Prox1 expression and lymphatic endothelial cell identity but also demonstrate that the lymphatic endothelium has haemogenic capacity, ordinarily repressed by Prox1.


Asunto(s)
Células Endoteliales , Elementos de Facilitación Genéticos , Hematopoyesis , Vasos Linfáticos , Animales , Ratones , Células Endoteliales/metabolismo , Elementos de Facilitación Genéticos/genética , Hematopoyesis/genética , Proteínas de Homeodominio/metabolismo , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Factores de Transcripción/metabolismo
2.
J Clin Invest ; 132(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35271504

RESUMEN

Clearance of dying cells by efferocytosis is necessary for cardiac repair after myocardial infarction (MI). Recent reports have suggested a protective role for vascular endothelial growth factor C (VEGFC) during acute cardiac lymphangiogenesis after MI. Here, we report that defective efferocytosis by macrophages after experimental MI led to a reduction in cardiac lymphangiogenesis and Vegfc expression. Cell-intrinsic evidence for efferocytic induction of Vegfc was revealed after adding apoptotic cells to cultured primary macrophages, which subsequently triggered Vegfc transcription and VEGFC secretion. Similarly, cardiac macrophages elevated Vegfc expression levels after MI, and mice deficient for myeloid Vegfc exhibited impaired ventricular contractility, adverse tissue remodeling, and reduced lymphangiogenesis. These results were observed in mouse models of permanent coronary occlusion and clinically relevant ischemia and reperfusion. Interestingly, myeloid Vegfc deficiency also led to increases in acute infarct size, prior to the amplitude of the acute cardiac lymphangiogenesis response. RNA-Seq and cardiac flow cytometry revealed that myeloid Vegfc deficiency was also characterized by a defective inflammatory response, and macrophage-produced VEGFC was directly effective at suppressing proinflammatory macrophage activation. Taken together, our findings indicate that cardiac macrophages promote healing through the promotion of myocardial lymphangiogenesis and the suppression of inflammatory cytokines.


Asunto(s)
Lesiones Cardíacas , Infarto del Miocardio , Factor C de Crecimiento Endotelial Vascular/metabolismo , Animales , Lesiones Cardíacas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Fagocitosis , Factor C de Crecimiento Endotelial Vascular/genética
3.
Sci Adv ; 7(18)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33931446

RESUMEN

Recent findings indicate that mitochondrial respiration regulates blood endothelial cell proliferation; however, its role in differentiating lymphatic endothelial cells (LECs) is unknown. We hypothesized that mitochondria could work as a sensor of LECs' metabolic specific needs by determining their functional requirements according to their differentiation status and local tissue microenvironment. Accordingly, we conditionally deleted the QPC subunit of mitochondrial complex III in differentiating LECs of mouse embryos. Unexpectedly, mutant mice were devoid of a lymphatic vasculature by mid-gestation, a consequence of the specific down-regulation of main LEC fate regulators, particularly Vegfr3, leading to the loss of LEC fate. Mechanistically, this is a result of reduced H3K4me3 and H3K27ac in the genomic locus of key LEC fate controllers (e.g., Vegfr3 and Prox1). Our findings indicate that by sensing the LEC differentiation status and microenvironmental metabolic conditions, mitochondrial complex III regulates the critical Prox1-Vegfr3 feedback loop and, therefore, LEC fate specification and maintenance.

4.
Nature ; 588(7839): 705-711, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33299187

RESUMEN

Recent studies have suggested that lymphatics help to restore heart function after cardiac injury1-6. Here we report that lymphatics promote cardiac growth, repair and cardioprotection in mice. We show that a lymphoangiocrine signal produced by lymphatic endothelial cells (LECs) controls the proliferation and survival of cardiomyocytes during heart development, improves neonatal cardiac regeneration and is cardioprotective after myocardial infarction. Embryos that lack LECs develop smaller hearts as a consequence of reduced cardiomyocyte proliferation and increased cardiomyocyte apoptosis. Culturing primary mouse cardiomyocytes in LEC-conditioned medium increases cardiomyocyte proliferation and survival, which indicates that LECs produce lymphoangiocrine signals that control cardiomyocyte homeostasis. Characterization of the LEC secretome identified the extracellular protein reelin (RELN) as a key component of this process. Moreover, we report that LEC-specific Reln-null mouse embryos develop smaller hearts, that RELN is required for efficient heart repair and function after neonatal myocardial infarction, and that cardiac delivery of RELN using collagen patches improves heart function in adult mice after myocardial infarction by a cardioprotective effect. These results highlight a lymphoangiocrine role of LECs during cardiac development and injury response, and identify RELN as an important mediator of this function.


Asunto(s)
Corazón/embriología , Sistema Linfático/citología , Sistema Linfático/metabolismo , Miocardio/citología , Miocitos Cardíacos/citología , Regeneración , Transducción de Señal , Animales , Animales Recién Nacidos , Apoptosis , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Células Endoteliales/metabolismo , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Integrina beta1/metabolismo , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Tamaño de los Órganos , Organogénesis , Proteína Reelina , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
5.
JCI Insight ; 5(13)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32525843

RESUMEN

Genetic or acquired defects of the lymphatic vasculature often result in disfiguring, disabling, and, occasionally, life-threatening clinical consequences. Advanced forms of lymphedema are readily diagnosed clinically, but more subtle presentations often require invasive imaging or other technologies for a conclusive diagnosis. On the other hand, lipedema, a chronic lymphatic microvascular disease with pathological accumulation of subcutaneous adipose tissue, is often misdiagnosed as obesity or lymphedema; currently there are no biomarkers or imaging criteria available for a conclusive diagnosis. Recent evidence suggests that otherwise-asymptomatic defective lymphatic vasculature likely contributes to an array of other pathologies, including obesity, inflammatory bowel disease, and neurological disorders. Accordingly, identification of biomarkers of lymphatic malfunction will provide a valuable resource for the diagnosis and clinical differentiation of lymphedema, lipedema, obesity, and other potential lymphatic pathologies. In this paper, we profiled and compared blood plasma exosomes isolated from mouse models and from human subjects with and without symptomatic lymphatic pathologies. We identified platelet factor 4 (PF4/CXCL4) as a biomarker that could be used to diagnose lymphatic vasculature dysfunction. Furthermore, we determined that PF4 levels in circulating blood plasma exosomes were also elevated in patients with lipedema, supporting current claims arguing that at least some of the underlying attributes of this disease are also the consequence of lymphatic defects.


Asunto(s)
Biomarcadores/análisis , Lipedema/metabolismo , Linfedema/metabolismo , Factor Plaquetario 4/metabolismo , Tejido Adiposo/patología , Animales , Biomarcadores/sangre , Exosomas/metabolismo , Lipedema/diagnóstico , Lipedema/fisiopatología , Linfedema/fisiopatología , Ratones , Obesidad/patología , Grasa Subcutánea/patología
6.
Dev Biol ; 462(2): 119-128, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32169553

RESUMEN

Arl13b is a gene known to regulate ciliogenesis. Functional alterations in this gene's activity have been associated with Joubert syndrome. We found that in Arl13 null mouse embryos the orientation of the optic cup is inverted, such that the lens is abnormally surrounded by an inverted optic cup whose retina pigmented epithelium is oddly facing the surface ectoderm. Loss of Arl13b leads to the disruption of optic vesicle's patterning and expansion of ventral fates. We show that this phenotype is consequence of miss-regulation of Sonic hedgehog (Shh) signaling and demonstrate that the Arl13b-/- eye phenotype can be rescued by deletion of Gli2, a downstream effector of the Shh pathway. This work identified an unexpected role of primary cilia during the morphogenetic movements required for the formation of the eye.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Cilios/metabolismo , Ojo/embriología , Factores de Ribosilacion-ADP/genética , Animales , Tipificación del Cuerpo/genética , Proteína Morfogenética Ósea 4/metabolismo , Cilios/genética , Desarrollo Embrionario , Ojo/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Cristalino/embriología , Cristalino/metabolismo , Masculino , Ratones , Ratones Noqueados , Morfogénesis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Organogénesis , Epitelio Pigmentado de la Retina/embriología , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal/genética , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteína Gli2 con Dedos de Zinc/genética , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Homeobox SIX3
7.
Blood ; 134(20): 1764-1775, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31562136

RESUMEN

Hemostasis associated with tissue injury is followed by wound healing, a complex process by which damaged cellular material is removed and tissue repaired. Angiogenic responses are a central aspect of wound healing, including the growth of new lymphatic vessels by which immune cells, protein, and fluid are transported out of the wound area. The concept that hemostatic responses might be linked to wound healing responses is an old one, but demonstrating such a link in vivo and defining specific molecular mechanisms by which the 2 processes are connected has been difficult. In the present study, we demonstrate that the lymphangiogenic factors vascular endothelial growth factor C (VEGFC) and VEGFD are cleaved by thrombin and plasmin, serine proteases generated during hemostasis and wound healing. Using a new tail-wounding assay to test the relationship between clot formation and lymphangiogenesis in mice, we find that platelets accelerate lymphatic growth after injury in vivo. Genetic studies reveal that platelet enhancement of lymphatic growth after wounding is dependent on the release of VEGFC, but not VEGFD, a finding consistent with high expression of VEGFC in both platelets and avian thrombocytes. Analysis of lymphangiogenesis after full-thickness skin excision, a wound model that is not associated with significant clot formation, also revealed an essential role for VEGFC, but not VEGFD. These studies define a concrete molecular and cellular link between hemostasis and lymphangiogenesis during wound healing and reveal that VEGFC, the dominant lymphangiogenic factor during embryonic development, continues to play a dominant role in lymphatic growth in mature animals.


Asunto(s)
Hemostasis , Linfangiogénesis , Factor C de Crecimiento Endotelial Vascular/metabolismo , Animales , Plaquetas/metabolismo , Línea Celular , Femenino , Humanos , Masculino , Ratones , Activación Plaquetaria , Trombina/metabolismo , Factor D de Crecimiento Endotelial Vascular/metabolismo
8.
J Clin Invest ; 129(11): 4912-4921, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31415243

RESUMEN

Molecular heterogeneity of endothelial cells underlies their highly specialized functions during changing physiological conditions within diverse vascular beds. For example, placental spiral arteries (SAs) undergo remarkable remodeling to meet the ever-growing demands of the fetus - a process which is deficient in preeclampsia. The extent to which maternal endothelial cells coordinate with immune cells and pregnancy hormones to promote SA remodeling remains largely unknown. Here we found that remodeled SAs expressed the lymphatic markers PROX1, LYVE1, and VEGFR3, mimicking lymphatic identity. Uterine natural killer (uNK) cells, which are required for SA remodeling and secrete VEGFC, were both sufficient and necessary for VEGFR3 activation in vitro and in mice lacking uNK cells, respectively. Using Flt4Chy/+ mice with kinase inactive VEGFR3 and Vegfcfl/fl Vav1-Cre mice, we demonstrated that SA remodeling required VEGFR3 signaling, and that disrupted maternal VEGFR3 signaling contributed to late-gestation fetal growth restriction. Collectively, we identified a novel instance of lymphatic mimicry by which maternal endothelial cells promote SA remodeling, furthering our understanding of the vascular heterogeneity employed for the mitigation of pregnancy complications such as fetal growth restriction and preeclampsia.


Asunto(s)
Arterias/inmunología , Retardo del Crecimiento Fetal/inmunología , Imitación Molecular , Placenta/inmunología , Preeclampsia/inmunología , Útero/inmunología , Remodelación Vascular/inmunología , Animales , Antígenos de Diferenciación , Arterias/patología , Endotelio Linfático/inmunología , Endotelio Linfático/patología , Femenino , Retardo del Crecimiento Fetal/patología , Humanos , Ratones , Placenta/irrigación sanguínea , Placenta/patología , Preeclampsia/patología , Embarazo , Útero/irrigación sanguínea , Útero/patología
9.
Development ; 145(17)2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30042182

RESUMEN

Although major progress in our understanding of the genes and mechanisms that regulate lymphatic vasculature development has been made, we still do not know how lumen formation and maintenance occurs. Here, we identify the Ras-interacting protein Rasip1 as a key player in this process. We show that lymphatic endothelial cell-specific Rasip1-deficient mouse embryos exhibit enlarged and blood-filled lymphatics at embryonic day 14.5. These vessels have patent lumens with disorganized junctions. Later on, as those vessels become fragmented and lumens collapse, cell junctions become irregular. In addition, Rasip1 deletion at later stages impairs lymphatic valve formation. We determined that Rasip1 is essential for lymphatic lumen maintenance during embryonic development by regulating junction integrity, as Rasip1 loss results in reduced levels of junction molecules and defective cytoskeleton organization in vitro and in vivo We determined that Rasip1 regulates Cdc42 activity, as deletion of Cdc42 results in similar phenotypes to those seen following the loss of Rasip1 Furthermore, ectopic Cdc42 expression rescues the phenotypes in Rasip1-deficient lymphatic endothelial cells, supporting the suggestion that Rasip1 regulates Cdc42 activity to regulate cell junctions and cytoskeleton organization, which are both activities required for lymphatic lumen maintenance.


Asunto(s)
Proteínas Portadoras/metabolismo , Citoesqueleto/metabolismo , Embrión de Mamíferos/embriología , Células Endoteliales/metabolismo , Vasos Linfáticos/embriología , Uniones Estrechas/metabolismo , Animales , Proteínas Portadoras/genética , Citoesqueleto/genética , Embrión de Mamíferos/citología , Células Endoteliales/citología , Péptidos y Proteínas de Señalización Intracelular , Vasos Linfáticos/citología , Ratones , Ratones Transgénicos , Uniones Estrechas/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
10.
Development ; 145(10)2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773646

RESUMEN

Despite the essential role of the lymphatic vasculature in tissue homeostasis and disease, knowledge of the organ-specific origins of lymphatic endothelial progenitor cells remains limited. The assumption that most murine embryonic lymphatic endothelial cells (LECs) are venous derived has recently been challenged. Here, we show that the embryonic dermal blood capillary plexus constitutes an additional, local source of LECs that contributes to the formation of the dermal lymphatic vascular network. We describe a novel mechanism whereby rare PROX1-positive endothelial cells exit the capillary plexus in a Ccbe1-dependent manner to establish discrete LEC clusters. As development proceeds, these clusters expand and further contribute to the growing lymphatic system. Lineage tracing and analyses of Gata2-deficient mice confirmed that these clusters are endothelial in origin. Furthermore, ectopic expression of Vegfc in the vasculature increased the number of PROX1-positive progenitors within the capillary bed. Our work reveals a novel source of lymphatic endothelial progenitors employed during construction of the dermal lymphatic vasculature and demonstrates that the blood vasculature is likely to remain an ongoing source of LECs during organogenesis, raising the question of whether a similar mechanism operates during pathological lymphangiogenesis.


Asunto(s)
Capilares/citología , Células Endoteliales/citología , Proteínas de Homeodominio/genética , Linfangiogénesis/fisiología , Vasos Linfáticos/embriología , Células Madre/citología , Proteínas Supresoras de Tumor/genética , Animales , Proteínas de Unión al Calcio/genética , Factor de Transcripción GATA2/genética , Linfangiogénesis/genética , Vasos Linfáticos/citología , Ratones , Ratones Transgénicos , Factor C de Crecimiento Endotelial Vascular/biosíntesis , Factor C de Crecimiento Endotelial Vascular/genética
11.
Genesis ; 56(4): e23102, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29569811

RESUMEN

The lymphatic vascular system is a one-direction network of thin-walled capillaries and larger vessels covered by a continuous layer of endothelial cells responsible for maintaining fluid homeostasis. Some of the main functions of the lymphatic vasculature are to drain fluid from the extracellular spaces and return it back to the blood circulation, lipid absorption from the intestinal tract, and transport of immune cells to lymphoid organs. A number of genes controlling the development of the mammalian lymphatic vasculature have been identified in the last few years, and their functional roles started to be characterized using gene inactivation approaches in mice. Unfortunately, only few mouse Cre strains relatively specific for lymphatic endothelial cells (LECs) are currently available. In this article, we report the generation of a novel Podoplanin (Pdpn) GFPCre transgenic mouse strain using its 5' regulatory region. Pdpn encodes a transmembrane mucin-type O-glycoprotein that is expressed on the surface of embryonic and postnatal LECs, in addition to few other cell types. Our detailed characterization of this novel strain indicates that it will be a valuable additional genetic tool for the analysis of gene function in LECs.


Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Glicoproteínas de Membrana/genética , Animales , Eliminación de Gen , Ingeniería Genética/métodos , Integrasas , Vasos Linfáticos/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Factores de Transcripción/genética
12.
Physiology (Bethesda) ; 32(6): 444-452, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29021364

RESUMEN

The lymphatic vasculature is crucial for maintaining tissue-fluid homeostasis, providing immune surveillance and mediating lipid absorption. The lymphatic vasculature is tightly associated with the blood vasculature, although it exhibits distinct morphological and functional features. Endothelial cells (ECs) lineage fate specification is determined during embryonic development; however, accumulating evidence suggests that differentiated ECs exhibit remarkable heterogeneity and plasticity. In this review, we provide an overview of the molecular mechanisms promoting lymphatic cell fate specification in the mammalian embryo. We also summarize available data suggesting that lymphatic EC fate is reprogrammable in normal and pathological settings. We further discuss the possible advantages of cell fate manipulation to treat certain disorders associated with lymphatic dysfunction.


Asunto(s)
Células Endoteliales/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Vasos Linfáticos/fisiología
13.
Hypertens Res ; 38(1): 21-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25209104

RESUMEN

Macrophages have an important role in the pathogenesis of hypertension and associated end-organ damage via the activation of the Toll-like receptors, such as Toll-like receptor-4 (TLR4). Accumulating evidence suggests that the angiotensin AT2 receptor (AT2R) has a protective role in pathological conditions involving inflammation and tissue injury. We have recently shown that AT(2)R stimulation is renoprotective, which occurs in part via increased levels of anti-inflammatory interleukin-10 (IL-10) production in renal epithelial cells; however, the role of AT(2)R in the inflammatory activity of macrophages is not known. The present study was designed to investigate whether AT(2)R activation stimulates an anti-inflammatory response in TLR4-induced inflammation. The effects of the anti-inflammatory mechanisms that occurred following pre-treatment with the AT(2)R agonist Compound 21 (C21) (1 µmol ml(-1)) on the cytokine profiles of THP-1 macrophages after activation by lipopolysaccharide (LPS) (1 µg ml(-1)) were studied. The AT(2)R agonist dose-dependently attenuated LPS-induced tumor necrosis factor-α (TNF-α) and IL-6 production but increased IL-10 production. IL-10 was critical for the anti-inflammatory effects of AT(2)R stimulation because the IL-10-neutralizing antibody dose-dependently abolished the AT(2)R-mediated decrease in TNF-α levels. Further, enhanced IL-10 levels were associated with a sustained, selective increase in the phosphorylation of extracellular signal-regulated kinase (ERK1/2) but not p38 mitogen-activated protein kinase (MAPK). Blocking the activation of ERK1/2 before C21 pre-treatment completely abrogated this increased IL-10 production in response to the AT(2)R agonist C21, while there was a partial reduction in IL-10 levels following the inhibition of p38. We conclude that AT(2)R stimulation exerts a novel anti-inflammatory response in THP-1 macrophages via enhanced IL-10 production as a result of sustained, selective ERK1/2 phosphorylation, which may have protective roles in hypertension and associated tissue injury.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Interleucina-10/metabolismo , Macrófagos/efectos de los fármacos , Receptor de Angiotensina Tipo 2/agonistas , Antiinflamatorios/uso terapéutico , Bencimidazoles , Compuestos de Bifenilo , Línea Celular , Evaluación Preclínica de Medicamentos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Lipopolisacáridos , Macrófagos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Tetrazoles , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Biochem Pharmacol ; 89(1): 99-108, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24582769

RESUMEN

We have recently reported that CXCR7, the alternate high affinity SDF-1 receptor, is induced during monocyte-to-macrophage differentiation, leading to increased macrophage phagocytosis linked to atherosclerosis. Statins, the most widely used medications for atherosclerosis, were shown to have pleiotropic beneficial effects independent of their cholesterol-lowering activity. This study aimed to determine whether induction of CXCR7 during macrophage differentiation is inhibited by statins and its significance on macrophage physiology. Here we show for the first time that atorvastatin dose-dependently inhibited CXCR7 mRNA and protein expression in THP-1 macrophages, without affecting the other SDF-1 receptor, CXCR4. Pharmacotherapy relevant dose of atorvastatin affected neither cell viability nor macrophage differentiation. Suppression of CXCR7 expression was completely reversed by supplementation with mevalonate. Inhibition of squalene synthase, the enzyme committed to cholesterol biosynthesis, also decreased CXCR7 induction, albeit not as efficacious as atorvastatin. However, the geranylgeranyl transferase inhibitor, GGTI-286, the farnesyl transferase inhibitor, FTI-276, and the Rho kinase inhibitor, Y-27632, all failed to mimic the effect of atorvastatin, suggesting that the protein prenylation pathways are not critical for atorvastatin inhibition of CXCR7 induction. Interestingly, the dramatic effect of atorvastatin was only partially mimicked by other statins including pravastatin, fluvastatin, mevastatin, and simvastatin. Furthermore, activation of CXCR7 by SDF-1, TC14012, or I-TAC all prompted macrophage migration, which was significantly suppressed by atorvastatin treatment, but not by the CXCR4 antagonist. We conclude that atorvastatin modulates macrophage migration by down-regulating CXCR7 expression, suggesting a new CXCR7-dependent mechanism of atorvastatin to benefit atherosclerosis treatment beyond its lipid lowering effect.


Asunto(s)
Anticolesterolemiantes/farmacología , Movimiento Celular/efectos de los fármacos , Ácidos Heptanoicos/farmacología , Macrófagos/metabolismo , Pirroles/farmacología , Receptores CXCR/antagonistas & inhibidores , Atorvastatina , Secuencia de Bases , Diferenciación Celular/efectos de los fármacos , Línea Celular , Colesterol/biosíntesis , Cartilla de ADN , Humanos , Macrófagos/citología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores CXCR/biosíntesis , Receptores CXCR/genética
15.
J Biol Chem ; 288(22): 15481-94, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23599431

RESUMEN

The discovery of CXCR7 as a new receptor for SDF-1 places many previously described SDF-1 functions attributed to CXCR4 in question, though whether CXCR7 acts as a signaling or "decoy" receptor has been in debate. It is known that CXCR7 is not expressed in normal blood leukocytes; however, the potential role of leukocyte CXCR7 in disease states has not been addressed. The aim of this study was to determine the expression and function of macrophage CXCR7 linked to atherosclerosis. Here, we show that CXCR7 was detected in macrophage-positive area of aortic atheroma of ApoE-null mice, but not in healthy aorta. During monocyte differentiation to macrophages, CXCR7 was up-regulated at mRNA and protein levels, with more expression in M1 than in M2 phenotype. In addition, CXCR7 induction was associated with a SDF-1 signaling switch from the pro-survival ERK and AKT pathways in monocytes to the pro-inflammatory JNK and p38 pathways in macrophages. The latter effect was mimicked by a CXCR7-selective agonist TC14012 and abolished by siRNA knockdown of CXCR7. Furthermore, CXCR7 activation increased macrophage phagocytic activity, which was suppressed by CXCR7 siRNA silencing or by inhibiting either the JNK or p38 pathways, but was not affected by blocking CXCR4. Finally, activation of CXCR7 by I-TAC showed a similar signaling and phagocytic activity in macrophages with no detectable CXCR3. We conclude that CXCR7 is induced during monocyte-to-macrophage differentiation, which is required for SDF-1 and I-TAC signaling to JNK and p38 pathways, leading to enhanced macrophage phagocytosis, thus possibly contributing to atherogenesis.


Asunto(s)
Aterosclerosis/metabolismo , Quimiocina CXCL12/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , Fagocitosis , Receptores CXCR/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Tumoral , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL12/genética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Mutantes , Monocitos/metabolismo , Monocitos/patología , Oligopéptidos/farmacología , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/mortalidad , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CXCR/genética , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
17.
J Biol Chem ; 286(30): 27027-38, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21652710

RESUMEN

The discovery of the role of P2Y(12) receptor in platelet aggregation leads to a new anti-thrombotic drug Plavix; however, little is known about non-platelet P2Y receptors in thrombosis. This study tested the hypothesis that endothelial P2Y receptor(s) mediates up-regulation of tissue factor (TF), the initiator of coagulation cascade. Stimulation of human coronary artery endothelial cells (HCAEC) by UTP/ATP increased the mRNA level of TF but not of its counterpart-tissue factor pathway inhibitor, which was accompanied by up-regulation of TF protein and cell surface activity. RT-PCR revealed a selective expression of P2Y(2) and P2Y(11) receptors in HCAEC. Consistent with this, TF up-regulation was inhibited by suramin or by siRNA silencing of P2Y(2) receptor, but not by NF-157, a P2Y(11)-selective antagonist, suggesting a role for the P2Y(2) receptor. In addition, P2Y(2) receptor activated ERK1/2, JNK, and p38 MAPK pathways without affecting the positive NF-κB and negative AKT regulatory pathways of TF expression. Furthermore, TF up-regulation was abolished or partially suppressed by inhibition of p38 or JNK but not ERK1/2. Interestingly, blockade of the PLC/Ca(2+) pathway did not affect P2Y(2) receptor activation of p38, JNK, and TF induction. However, blockade of Src kinase reduced phosphorylation of p38 but not JNK, eliminating TF induction. In contrast, inhibition of Rho kinase reduced phosphorylation of JNK but not p38, decreasing TF expression. These findings demonstrate that P2Y(2) receptor mediates TF expression in HCAEC through new mechanisms involving Src/p38 and Rho/JNK pathways, possibly contributing to a pro-thrombotic status after vascular injury.


Asunto(s)
Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Receptores Purinérgicos P2Y2/metabolismo , Tromboplastina/biosíntesis , Adenosina Trifosfato/farmacología , Antinematodos/farmacología , Línea Celular Tumoral , Vasos Coronarios/lesiones , Vasos Coronarios/patología , Células Endoteliales/patología , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y2/genética , Suramina/farmacología , Tromboplastina/genética , Uridina Trifosfato/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA