Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; : 101417, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39369960

RESUMEN

BACKGROUND AND AIMS: Notch and TAZ are implicated in cholangiocarcinogenesis, but whether and how these oncogenic molecules interact remain unknown. METHODS: The development of CCA was induced by hydrodynamic tail vein (HDTV) injection of oncogenes (NICD/AKT) to the FVB/NJ mice. CCA xenograft was developed by inoculation of human CCA cells into the livers of SCID mice. Tissues and cells were analyzed using qRT-PCR, Western blotting analyses, Immunohistochemistry, ChIP-qPCR and WST-1 cell proliferation Assay. RESULTS: Our experimental findings show that TAZ is indispensable in NICD-driven cholangiocarcinogenesis. Notch activation induces the expression of METTL3 (Methyltransferase like-3) which catalyzes N6-methyladenosine (m6A) modification of TAZ mRNA and that this mechanism plays a central role in the crosstalk between Notch and TAZ in CCA cells. Mechanistically, Notch regulates the expression of METTL3 through the binding of NICD to its downstream transcription factor CSL in the promoter region of METTL3. METTL3 in turn mediates m6A modification of TAZ mRNA which is recognized by the m6A reader YTHDF1 to enhance TAZ protein translation. We observed that inhibition of Notch signaling decreased the protein levels of both MELLT3 and TAZ. Depletion of METTL3 by shRNAs or by the next generation GapmeR antisense oligonucleotides (ASOs) decreased the level of TAZ protein and inhibited the growth of human CCA cells in vitro and in mice. CONCLUSION: This study describes a novel Notch-METTL3-TAZ signaling cascade which is important in CCA development and progression. Our experimental results provide new insight into how the Notch pathway cooperates with TAZ signaling in CCA, and the findings may have important therapeutic implications.

2.
Opt Lett ; 49(20): 5862-5865, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39404557

RESUMEN

Near-field directional excitation of dipolar sources is crucial for many practical applications, such as quantum optics, photonic integrated circuits, and on-chip information processing. Based on theoretical analyses and numerical simulations, here we find that the near-field directionality of circularly polarized dipoles can be flexibly toggled by engineering the anisotropy of the surrounding matter, in which the dipolar source locates. To be specific, if the circularly polarized dipole is placed close to the interface between a hyperbolic matter and air, the main propagation direction of excited surface waves would be reversed when the location of the dipolar source is changed from the air region to the hyperbolic-matter region. The underlying mechanism is that the spatial-frequency spectrum of evanescent waves carried by the dipolar source in a homogeneous surrounding matter could be flexibly reshaped by the matter's anisotropy, especially when the isofrequency contour of the surrounding matter changes from the circular shape to the hyperbolic one.

3.
Phys Rev Lett ; 133(10): 101805, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39303260

RESUMEN

We report the first search for the elastic scatterings between cosmic-ray boosted sub-MeV dark matter (DM) and electrons in the PandaX-4T liquid xenon experiment. Sub-MeV DM particles can be accelerated by scattering with electrons in the cosmic rays and produce detectable electron recoil signals in the detector. Using the commissioning data from PandaX-4T of 0.63 tonne·year exposure, we set new constraints on DM-electron scattering cross sections for DM masses ranging from 10 eV/c^{2} to 3 keV/c^{2}.

4.
Cell Mol Gastroenterol Hepatol ; : 101404, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278404

RESUMEN

BACKGROUND & AIMS: The RNA-binding motif protein 39 (RBM39) functions as both an RNA-binding protein and a splicing factor in a variety of cancer types. However, the function of RBM39 in cholangiocarcinoma (CCA) remains undefined. In this study, we aimed to investigate the role of RBM39 in CCA and explore its potential as a therapeutic target. METHODS: The expression of RBM39 in CCA was investigated by analyzing human CCA tumor specimens. CRISPR/Cas9 or shRNA-mediated depletion of RBM39 was performed in vitro and in vivo to document the oncogenic role of RBM39 in CCA. The anti-tumor effect of the RBM39 inhibitor, Indisulam, in combination with the EZH2 degrader MS177 was assessed in vitro and in vivo. RESULTS: RBM39 is significantly increased in human CCA tissues and associated with a poor prognosis in patients with CCA. Depletion of RBM39 by CRISPR/Cas9 or shRNA inhibited CCA cell proliferation in vitro and prevented CCA development and tumor growth in mice. Mechanistically, our results showed that depletion of RBM39 suppressed EZH2 expression via disrupting its mRNA splicing. RBM39-regulated EZH2 controls WNT7B/ß-catenin activity. Pharmacological co-targeting of RBM39 (with Indisulam) and EZH2 (with MS177) resulted in a synergistic antitumor effect, both in vitro and in vivo. CONCLUSION: This study discloses a novel RBM39-EZH2-ß-catenin signaling axis that is crucial for CCA growth. Our findings suggest that simultaneous inhibition of RBM39 and EZH2 presents a promising therapeutic strategy for CCA treatment.

5.
aBIOTECH ; 5(3): 403-407, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39279864

RESUMEN

Dynamic host-pathogen interactions determine whether disease will occur. Pathogen effector proteins are central players in such disease development. On one hand, they improve susceptibility by manipulating host targets; on the other hand, they can trigger immunity after recognition by host immune receptors. A major research direction in the study of molecular plant pathology is to understand effector-host interactions, which has informed the development and breeding of crops with enhanced disease resistance. Recent breakthroughs on experiment- and artificial intelligence-based structure analyses significantly accelerate the development of this research area. Importantly, the detailed molecular insight of effector-host interactions enables precise engineering to mitigate disease. Here, we highlight a recent study by Xiao et al., who describe the structure of an effector-receptor complex that consists of a fungal effector, with polygalacturonase (PG) activity, and a plant-derived polygalacturonase-inhibiting protein (PGIP). PGs weaken the plant cell wall and produce immune-suppressive oligogalacturonides (OGs) as a virulence mechanism; however, PGIPs directly bind to PGs and alter their enzymatic activity. When in a complex with PGIPs, PGs produce OG polymers with longer chains that can trigger immunity. Xiao et al. demonstrate that a PGIP creates a new active site tunnel, together with a PG, which favors the production of long-chain OGs. In this way, the PGIP essentially acts as both a PG receptor and enzymatic manipulator, converting virulence to defense activation. Taking a step forward, the authors used the PG-PGIP complex structure as a guide to generate PGIP variants with enhanced long-chain OG production, likely enabling further improved disease resistance. This study discovered a novel mechanism by which a plant receptor plays a dual role to activate immunity. It also demonstrates how fundamental knowledge, obtained through structural analyses, can be employed to guide the design of proteins with desired functions in agriculture.

6.
Molecules ; 29(18)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39339290

RESUMEN

Ketones, prevalent in many biologically significant molecules, require the development of novel methods to synthesize these structures, which is a critical endeavor in organic synthesis. Transition metal catalysis has proven to be an effective method for synthesizing ketones. However, the scope of these substrates remains relatively limited, particularly due to their incompatibility with sensitive functional groups. Herein, we report a Ni-catalyzed three-component 1,2-carboacylation of alkenes, which activates secondary/tertiary alkyl bromides. This method offers significant advantages: simplicity of operation, ready availability of substrates, and broad substrate applicability. A series of experimental studies have helped clarify the key mechanistic pathways involved in this cascade reaction.

7.
iScience ; 27(9): 110660, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39262787

RESUMEN

Atrial fibrillation (AF) is the most common arrhythmia in the world. Human genetics can provide strong AF therapeutic candidates, but the identification of the causal genes and their functions remains challenging. Here, we applied an AF fine-mapping strategy that leverages results from a previously published cross-ancestry genome-wide association study (GWAS), expression quantitative trait loci (eQTLs) from left atrial appendages (LAAs) obtained from two cohorts with distinct ancestry, and a paired RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) LAA single-nucleus assay (sn-multiome). At nine AF loci, our co-localization and fine-mapping analyses implicated 14 genes. Data integration identified several candidate causal AF variants, including rs7612445 at GNB4 and rs242557 at MAPT. Finally, we showed that the repression of the strongest AF-associated eQTL gene, LINC01629, in human embryonic stem cell-derived cardiomyocytes using CRISPR inhibition results in the dysregulation of pathways linked to genes involved in the development of atrial tissue and the cardiac conduction system.

8.
Int J Surg ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990283

RESUMEN

BACKGROUND: The effectiveness of bone marrow mononuclear cells combined with core decompression in the treatment of femoral head necrosis is controversial. The purpose of this study was to conduct a meta-analysis and systematic review of the evaluation of bone marrow mononuclear cells combined with core decompression in the treatment of femoral head necrosis, and to compare the therapeutic effect of this method with that of core decompression alone, so as to provide a basis for subsequent research and clinical treatment. METHODS: We conducted detailed searches across four databases in Embase, PubMed, Web of Science, and the Cochrane Library (up to October 2023), including eight studies with a total of 370 participants and 491 hip cases. This meta-analysis followed the Preferred Reporting Project (PRISMA) guidelines. Review Manager 5.4 was used to summarize and analyze the outcome indicators and the quality and reliability of the MAs were graded against a Measurement Tool to Assess Systematic Reviews 2 (AMSTAR 2). RESULTS: Eight studies were included inclusion criteria. The results of meta-analysis showed that the therapeutic effect of CD combined with BMMC on VAS was better than that of CD alone (MD =-5.32, 95%CI: -9.90, -0.74, P=0.02, I²=98%), and there was no statistically significant difference between CD combined with BMMC and CD alone in the treatment of HHS (MD =2.73, 95%CI: -2.63,8.09, P=0.32, I²=82%). We conducted sensitivity analysis, the results showed that CD joint BMMC treatment effect on the HHS is superior to the single CD (MD = 5.57, 95% CI: 1.94, 9.20, P = 0.003, I squared = 0%), both no significant differences in VAS (MD = 0.47, 95% CI: -1.74, 0.79, P=0.46, I²=83%). CONCLUSION: In this study, we found that core decompression combined with bone marrow monocyte therapy improved femoral head necrosis better than core decompression alone.

9.
Small Methods ; : e2400204, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38948952

RESUMEN

The construction of reliable preclinical models is crucial for understanding the molecular mechanisms involved in gastric cancer and for advancing precision medicine. Currently, existing in vitro tumor models often do not accurately replicate the human gastric cancer environment and are unsuitable for high-throughput therapeutic drug screening. In this study, droplet microfluidic technology is employed to create novel gastric cancer assembloids by encapsulating patient-derived xenograft gastric cancer cells and patient stromal cells in Gelatin methacryloyl (GelMA)-Gelatin-Matrigel microgels. The usage of GelMA-Gelatin-Matrigel composite hydrogel effectively alleviated cell aggregation and sedimentation during the assembly process, allowing for the handling of large volumes of cell-laden hydrogel and the uniform generation of assembloids in a high-throughput manner. Notably, the patient-derived xenograft assembloids exhibited high consistency with primary tumors at both transcriptomic and histological levels, and can be efficiently scaled up for preclinical drug screening efforts. Furthermore, the drug screening results clearly demonstrated that the in vitro assembloid model closely mirrored in vivo drug responses. Thus, these findings suggest that gastric cancer assembloids, which effectively replicate the in vivo tumor microenvironment, show promise for enabling more precise high-throughput drug screening and predicting the clinical outcomes of various drugs.

10.
Int J Surg ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896858

RESUMEN

BACKGROUND: Extracorporeal shockwave therapy (ESWT) is a traditional non-invasive therapy to treat osteonecrosis of the femur head (ONFH). This systematic review aims to investigate whether ESWT can improve the clinical function of ONFH and whether differences in improvement can be observed in radiographic outcomes. MATERIALS AND METHODS: Two authors independently searched PubMed, Embase, Cochrane Library, and Web of Science for English articles until October 21, 2023. After screening and reading the literature, the two authors independently used corresponding scales to evaluate the quality of the included articles and extracted data. The key data extracted included the Harris Hip Score (HHS), Visual Analog Scale (VAS), changes in lesion size, the change in the Association Research Circulation Osseous (ARCO) stage, and bone marrow edema stage. RESULTS: Nine articles included 468 males and 248 females. The average age was 43.29 years and the mean follow-up time was 15.19 months. After receiving ESWT, five studies involving 146 hips showed a higher HHS (MD=-33.38; 95%CI, -46.31, -20.45), and the difference was statistically significant (P<0.00001). The average VAS before treatment was above 5, but it dropped to 1.2 after ESWT (MD=4.64; 95%CI, 3.63, 5.64), and the difference was statistically significant (P<0.00001). Three studies found no significant differences in the areas of femoral head necrosis before and after treatment with ESWT(MD=9.66; 95%CI, -0.36, 19.67; P=0.06; I2=84%). Two articles showed that the use of ESWT had no significant effect on the change in the ARCO stage (MD=1.11; 95%CI, 0.76, 1.62; P=0.60; I2=0%). Three studies indicated that using ESWT could improve the bone marrow edema symptom in the early stage of ONFH (MD=4.35; 95%CI, 1.32, 14.37; P=0.02; I2=62%). CONCLUSION: Based on the current evidence, ESWT shows promise as a therapy to enhance hip function and alleviate pain in the early stage of ONFH. With the advancement of more precise imaging techniques, ESWT can potentially reduce the area affected by ONFH. However, such reduction was not found to be statistically significant at the imaging level. Additionally, ESWT could improve symptoms of bone marrow edema in the early stage. However, no significant change in ARCO grade was observed with ESWT treatment.

11.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928408

RESUMEN

Trueperella pyogenes is an important opportunistic pathogenic bacterium widely distributed in the environment. Pyolysin (PLO) is a primary virulence factor of T. pyogenes and capable of lysing many different cells. PLO is a member of the cholesterol-dependent cytolysin (CDC) family of which the primary structure only presents a low level of homology with other members from 31% to 45%. By deeply studying PLO, we can understand the overall pathogenic mechanism of CDC family proteins. This study established a mouse muscle tissue model infected with recombinant PLO (rPLO) and its single-point mutations, rPLO N139K and rPLO F240A, and explored its mechanism of causing inflammatory damage. The inflammatory injury abilities of rPLO N139K and rPLO F240A are significantly reduced compared to rPLO. This study elaborated on the inflammatory mechanism of PLO by examining its unit point mutations in detail. Our data also provide a theoretical basis and practical significance for future research on toxins and bacteria.


Asunto(s)
Proteínas Bacterianas , Proteínas Hemolisinas , Proteína con Dominio Pirina 3 de la Familia NLR , Mutación Puntual , Animales , Ratones , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Inflamación/metabolismo , Inflamación/genética , Potasio/metabolismo , Transducción de Señal , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Inflamasomas/metabolismo , Humanos
12.
New Phytol ; 243(1): 330-344, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38742296

RESUMEN

Arabidopsis Col-0 RPP2A and RPP2B confer recognition of Arabidopsis downy mildew (Hyaloperonospora arabidopsidis [Hpa]) isolate Cala2, but the identity of the recognized ATR2Cala2 effector was unknown. To reveal ATR2Cala2, an F2 population was generated from a cross between Hpa-Cala2 and Hpa-Noks1. We identified ATR2Cala2 as a non-canonical RxLR-type effector that carries a signal peptide, a dEER motif, and WY domains but no RxLR motif. Recognition of ATR2Cala2 and its effector function were verified by biolistic bombardment, ectopic expression and Hpa infection. ATR2Cala2 is recognized in accession Col-0 but not in Ler-0 in which RPP2A and RPP2B are absent. In ATR2Emoy2 and ATR2Noks1 alleles, a frameshift results in an early stop codon. RPP2A and RPP2B are essential for the recognition of ATR2Cala2. Stable and transient expression of ATR2Cala2 under 35S promoter in Arabidopsis and Nicotiana benthamiana enhances disease susceptibility. Two additional Col-0 TIR-NLR (TNL) genes (RPP2C and RPP2D) adjacent to RPP2A and RPP2B are quantitatively required for full resistance to Hpa-Cala2. We compared RPP2 haplotypes in multiple Arabidopsis accessions and showed that all four genes are present in all ATR2Cala2-recognizing accessions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Enfermedades de las Plantas , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oomicetos/patogenicidad , Proteínas NLR/metabolismo , Proteínas NLR/genética , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/inmunología , Secuencia de Aminoácidos , Alelos
13.
Anal Chem ; 96(19): 7360-7366, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38697955

RESUMEN

During the coronavirus disease 2019 (COVID-19) pandemic, which has witnessed over 772 million confirmed cases and over 6 million deaths globally, the outbreak of COVID-19 has emerged as a significant medical challenge affecting both affluent and impoverished nations. Therefore, there is an urgent need to explore the disease mechanism and to implement rapid detection methods. To address this, we employed the desorption separation ionization (DSI) device in conjunction with a mass spectrometer for the efficient detection and screening of COVID-19 urine samples. The study encompassed patients with COVID-19, healthy controls (HC), and patients with other types of pneumonia (OP) to evaluate their urine metabolomic profiles. Subsequently, we identified the differentially expressed metabolites in the COVID-19 patients and recognized amino acid metabolism as the predominant metabolic pathway involved. Furthermore, multiple established machine learning algorithms validated the exceptional performance of the metabolites in discriminating the COVID-19 group from healthy subjects, with an area under the curve of 0.932 in the blind test set. This study collectively suggests that the small-molecule metabolites detected from urine using the DSI device allow for rapid screening of COVID-19, taking just three minutes per sample. This approach has the potential to expand our understanding of the pathophysiological mechanisms of COVID-19 and offers a way to rapidly screen patients with COVID-19 through the utilization of machine learning algorithms.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/orina , COVID-19/virología , SARS-CoV-2/aislamiento & purificación , Pandemias , Masculino , Neumonía Viral/diagnóstico , Neumonía Viral/orina , Neumonía Viral/virología , Persona de Mediana Edad , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/orina , Femenino , Betacoronavirus/aislamiento & purificación , Espectrometría de Masas/métodos , Adulto , Metabolómica/métodos , Anciano , Aprendizaje Automático
14.
Phys Rev Lett ; 132(15): 152502, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682998

RESUMEN

^{134}Xe is a candidate isotope for neutrinoless double beta decay (0νßß) search. In addition, the two-neutrino case (2νßß) allowed by the standard model of particle physics has not yet been observed. With the 656-kg natural xenon in the fiducial volume of the PandaX-4T detector, which contains 10.4% of ^{134}Xe, and its initial 94.9-day exposure, we have established the most stringent constraints on 2νßß and 0νßß of ^{134}Xe half-lives, with limits of 2.8×10^{22} yr and 3.0×10^{23} yr at 90% confidence level, respectively. The 2νßß (0νßß) limit surpasses the previously reported best result by a factor of 32 (2.7), highlighting the potential of large monolithic natural xenon detectors for double beta decay searches.

15.
J Exp Clin Cancer Res ; 43(1): 117, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641672

RESUMEN

BACKGROUND: Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with poor prognosis. Further mechanistic insights into the molecular mechanisms of CCA are needed to develop more effective target therapy. METHODS: The expression of the histone lysine acetyltransferase KAT2B in human CCA was analyzed in human CCA tissues. CCA xenograft was developed by inoculation of human CCA cells with or without KAT2B overexpression into SCID mice. Western blotting, ChIP-qPCR, qRT-PCR, protein immunoprecipitation, GST pull-down and RNA-seq were performed to delineate KAT2B mechanisms of action in CCA. RESULTS: We identified KAT2B as a frequently downregulated histone acetyltransferase in human CCA. Downregulation of KAT2B was significantly associated with CCA disease progression and poor prognosis of CCA patients. The reduction of KAT2B expression in human CCA was attributed to gene copy number loss. In experimental systems, we demonstrated that overexpression of KAT2B suppressed CCA cell proliferation and colony formation in vitro and inhibits CCA growth in mice. Mechanistically, forced overexpression of KAT2B enhanced the expression of the tumor suppressor gene NF2, which is independent of its histone acetyltransferase activity. We showed that KAT2B was recruited to the promoter region of the NF2 gene via interaction with the transcription factor SP1, which led to enhanced transcription of the NF2 gene. KAT2B-induced NF2 resulted in subsequent inhibition of YAP activity, as reflected by reduced nuclear accumulation of oncogenic YAP and inhibition of YAP downstream genes. Depletion of NF2 was able to reverse KAT2B-induced reduction of nuclear YAP and subvert KAT2B-induced inhibition of CCA cell growth. CONCLUSIONS: This study provides the first evidence for an important tumor inhibitory effect of KAT2B in CCA through regulation of NF2-YAP signaling and suggests that this signaling cascade may be therapeutically targeted for CCA treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Animales , Humanos , Ratones , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/metabolismo , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Genes de la Neurofibromatosis 2 , Histonas/metabolismo , Lisina/metabolismo , Ratones SCID , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
16.
Small ; 20(26): e2310811, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38299466

RESUMEN

Osmotic energy, as a renewable clean energy with huge energy density and stable yield, has received widespread attention over the past decades. Reverse electrodialysis (RED) based on ion-exchange membranes is an important method of obtaining osmotic energy from salinity gradients. The preparation of ion-exchange membranes with both high ion selectivity and ion permeability is in constant exploration. In this work, metal hydroxide-organic framework (MHOF) membranes are successfully prepared onto porous anodic aluminum oxide (AAO) membranes by a facile hydrothermal method to form Ni2(OH)2@AAO composite membranes, used for osmotic energy conversion. The surface is negatively charged with cation selectivity, and the asymmetric structure and extreme hydrophilicity enhance the ionic flux for effective capture of osmotic energy. The maximum output power density of 5.65 W m-2 at a 50-fold KCl concentration gradient is achieved, which exceeds the commercial benchmark of 5 W m-2. Meanwhile, the composite membrane can also show good performance in different electrolyte solutions and acid-base environments. This work provides a new avenue for the construction and application of MHOF membranes in efficient osmotic energy conversion.

17.
J Med Imaging (Bellingham) ; 11(1): 014008, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38379775

RESUMEN

Purpose: In recent years, the continuous advancement of convolutional neural networks (CNNs) has led to the widespread integration of deep neural networks as a mainstream approach in clinical diagnostic support. Particularly, the utilization of CNN-based medical image segmentation has delivered favorable outcomes for aiding clinical diagnosis. Within this realm, network architectures based on the U-shaped structure and incorporating skip connections, along with their diverse derivatives, have gained extensive utilization across various medical image segmentation tasks. Nonetheless, two primary challenges persist. First, certain organs or tissues present considerable complexity, substantial morphological variations, and size discrepancies, posing significant challenges for achieving highly accurate segmentation. Second, the predominant focus of current deep neural networks on single-resolution feature extraction limits the effective extraction of feature information from complex medical images, thereby contributing to information loss via continuous pooling operations and contextual information interaction constraints within the U-shaped structure. Approach: We proposed a five-layer pyramid segmentation network (PS5-Net), a multiscale segmentation network with diverse resolutions that is founded on the U-Net architecture. Initially, this network effectively leverages the distinct features of images at varying resolutions across different dimensions, departing from prior single-resolution feature extraction methods to adapt to intricate and variable segmentation scenarios. Subsequently, to comprehensively integrate feature information from diverse resolutions, a kernel selection module is proposed to assign weights to features across different dimensions, enhancing the fusion of feature information from various resolutions. Within the feature extraction network denoted as PS-UNet, we preserve the classical structure of the traditional U-Net while enhancing it through the incorporation of dilated convolutions. Results: PS5-Net attains a Dice score of 0.9613 for liver segmentation on the CHLISC dataset and 0.8587 on the ISIC2018 dataset for skin lesion segmentation. Comparative analysis with diverse medical image segmentation methodologies in recent years reveals that PS5-Net has achieved the highest scores and substantial advancements. Conclusions: PS5-Net effectively harnesses the rich semantic information available at different resolutions, facilitating a comprehensive and nuanced understanding of the input medical images. By capitalizing on global contextual connections, the network adeptly captures the intricate interplay of features and dependencies across the entire image, resulting in more accurate and robust segmentation outcomes. The experimental validation of PS5-Net underscores its superior performance in medical image segmentation tasks, offering promising prospects for enhancing diagnostic and analytical processes within clinical settings. These results highlight the potential of PS5-Net to significantly contribute to the advancement of medical imaging technologies and ultimately improve patient care through more precise and reliable image analysis.

18.
J Environ Manage ; 352: 120050, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38224641

RESUMEN

Dirty-acid wastewater (DW) originating from the non-ferrous metal smelting industry is characterized by a high concentration of H2SO4 and As. During the chemical precipitation treatment, a significant volume of arsenic-containing slag is generated, leading to elevated treatment expenses. The imperative to address DW with methods that are cost-effective, highly efficient, and safe is underscored. This paper conducts a comprehensive analysis of three typical methods to DW treatment, encompassing technical principles, industrial application flow charts, research advancements, arsenic residual treatment, and economic considerations. Notably, the sulfide method emerges as a focal point due to its minimal production of arsenic residue and the associated lowest overall treatment costs. Moreover, in response to increasingly stringent environmental protection policies targeting new pollutants and carbon emissions reduction, the paper explores the evolving trends in DW treatment. These trends encompass rare metal and sulfuric acid recycling, cost-effective H2S production methods, and strategies for reducing, safely disposing of, and harnessing resources from arsenic residue.


Asunto(s)
Arsénico , Purificación del Agua , Arsénico/química , Metales , Aguas Residuales , Conservación de los Recursos Naturales
19.
Anal Bioanal Chem ; 416(9): 2057-2063, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37930374

RESUMEN

Ambient ionization mass spectrometry (AIMS) has been developing explosively since its first debut. The ionization process was hence able to be achieved under atmospheric pressure, facilitating on-site field analysis in a variety of areas, such as clinical diagnosis, metabolic phenotyping, and surface analysis. As part of the ambitious goal of making MS a general device that can be used in everyday life, lots of efforts have been paid to miniaturize the ionization source. This review discusses avant-garde sources that could be entirely hand-held without any accessories. The structure and applications of the devices are described in detail as well. They could be expediently used in real-time and on-site analysis, presenting a great future potential for the routinizing of MS.


Asunto(s)
Presión Atmosférica , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos
20.
Cell Signal ; 113: 110917, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37813295

RESUMEN

The conserved Hippo signalling pathway plays a crucial role in tumour formation by limiting tissue growth and proliferation. At the core of this pathway are tumour suppressor kinases STK3/4 and LATS1/2, which limit the activity of the oncogene YAP1, the primary downstream effector. Here, we employed a split TEV-based protein-protein interaction screen to assess the physical interactions among 28 key Hippo pathway components and potential upstream modulators. This screen led us to the discovery of TAOK2 as pivotal modulator of Hippo signalling, as it binds to the pathway's core kinases, STK3/4 and LATS1/2, and leads to their phosphorylation. Specifically, our findings revealed that TAOK2 binds to and phosphorylates LATS1, resulting in the reduction of YAP1 phosphorylation and subsequent transcription of oncogenes. Consequently, this decrease led to a decrease in cell proliferation and migration. Interestingly, a correlation was observed between reduced TAOK2 expression and decreased patient survival time in certain types of human cancers, including lung and kidney cancer as well as glioma. Moreover, in cellular models corresponding to these cancer types the downregulation of TAOK2 by CRISPR inhibition led to reduced phosphorylation of LATS1 and increased proliferation rates, supporting TAOK2's role as tumour suppressor gene. By contrast, overexpression of TAOK2 in these cellular models lead to increased phospho-LATS1 but reduced cell proliferation. As TAOK2 is a druggable kinase, targeting TAOK2 could serve as an attractive pharmacological approach to modulate cell growth and potentially offer strategies for combating cancer.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Proliferación Celular , Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasa 3 , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...