Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Org Lett ; 25(48): 8640-8644, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38016093

RESUMEN

While titanacyclopropanes are used to react mainly with ester, amide, and cyano to undergo cyclopropanation, herein they react preferentially with pyridine N-oxide to accomplish C2-H alkylation beyond these functionalities with double regioselectivity. After being pyridylated at the less hindered C-Ti bond, the remaining C-Ti bond of titanacyclopropanes can be further functionalized by various electrophiles, allowing facile introduction of complex alkyls onto the C2 of pyridines. Its synthetic potential has been demonstrated by late-stage diversification of drugs.

2.
J Cell Mol Med ; 27(23): 3760-3772, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698050

RESUMEN

Neonatal respiratory system disease is closely associated with embryonic lung development. Our group found that integrin ß4 (ITGB4) is downregulated in the airway epithelium of asthma patients. Asthma is the most common chronic respiratory illness in childhood. Therefore, we suspect whether the deletion of ITGB4 would affect fetal lung development. In this study, we characterized the role of ITGB4 deficiency in bronchopulmonary dysplasia (BPD). ITGB4 was conditionally knocked out in CCSP-rtTA, Tet-O-Cre and ITGB4f/f triple transgenic mice. Lung tissues at different developmental stages were collected for experimental detection and transcriptome sequencing. The effects of ITGB4 deficiency on lung branching morphogenesis were observed by fetal mouse lung explant culture. Deleting ITGB4 from the airway epithelial cells results in enlargement of alveolar airspaces, inhibition of branching, the abnormal structure of epithelium cells and the impairment of cilia growth during lung development. Scanning electron microscopy showed that the airway epithelial cilia of the ß4ccsp.cre group appear to be sparse, shortened and lodging. Lung-development-relevant factors such as SftpC and SOX2 significantly decreased both mRNA and protein levels. KEGG pathway analysis indicated that multiple ontogenesis-regulating-relevant pathways converge to FAK. Accordingly, ITGB4 deletion decreased phospho-FAK, phospho-GSK3ß and SOX2 levels, and the correspondingly contrary consequence was detected after treatment with GSK3ß agonist (wortmannin). Airway branching defect of ß4ccsp.cre mice lung explants was also partly recovered after wortmannin treatment. Airway epithelial-specific deletion of ITGB4 contributes to lung developmental defect, which could be achieved through the FAK/GSK3ß/SOX2 signal pathway.


Asunto(s)
Asma , Displasia Broncopulmonar , Integrina beta4 , Animales , Humanos , Recién Nacido , Ratones , Asma/metabolismo , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Células Epiteliales/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Integrina beta4/genética , Integrina beta4/metabolismo , Pulmón/metabolismo , Ratones Transgénicos , Wortmanina/metabolismo
3.
Org Lett ; 25(15): 2745-2749, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37036175

RESUMEN

Fe-catalyzed difunctionalization of aryl titanates via double C-H activation has been developed, where aryl titanates were arylated via ortho C-H activation, followed by ipso electrophilic trapping of the C-Ti bond. The ortho C-H arylation should be promoted by a 1,2-Fe/Ti synergistic heterobimetallic arylene intermediate and represents an ortho C-H ferration directed by a readily transformable C-Ti group. Common benzamides, esters, and nitriles function as arylating reagents, which involves another ortho C-H activation directed by these functionalities.

4.
J Am Chem Soc ; 145(3): 1542-1547, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36622693

RESUMEN

Regioselective difunctionalization of arenes remains a long-standing challenge in organic chemistry. We report a novel and general Fe/Ti synergistic methodology for regioselective synthesis of various polysubstituted arenes through either E/E' or Nu/E ortho difunctionalizations of arenes. Preliminary results showed that an unprecedented 1,2-Fe/Ti heterobimetallic arylene intermediate bearing two distinct C-M bonds is essential to the regioselective difunctionalization.

5.
J Cell Physiol ; 236(11): 7711-7724, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34018612

RESUMEN

Airway epithelial cells, the first barrier of the respiratory tract, play an indispensable role in innate immunity. Integrin ß4 (ITGB4) is a structural adhesion molecule that is involved in the pathological progression of acute inflammatory diseases and is downregulated in asthmatic patients. Research has shown that endothelial ITGB4 has proinflammatory properties in acute lung injury (ALI). However, the role of epithelial ITGB4 in a murine ALI model is still unknown. This study investigated the role of ITGB4 in lipopolysaccharide (LPS)-induced ALI. We found that ITGB4 in the airway epithelium had remarkably increased after the introduction of LPS in vivo and in vitro. Then, we constructed airway epithelial cell-specific ITGB4 knockout (ITGB4-/- ) mice to study its role in ALI. At a time point of 12 h after the tracheal injection of LPS, ITGB4-/- mice showed increased macrophages (mainly M1-type macrophages) and neutrophil infiltration into the lungs; inflammation-related proteins including interleukin (IL)-6, tumor necrosis factor, and IL-17A were significantly elevated compared to their levels in ITGB4+/+ mice. Furthermore, we investigated the role of ITGB4 in the anti-inflammatory response. Intriguingly, in the ITGB4-/- + LPS group, we found significantly reduced expression of anti-inflammatory factors, including IL-10 messenger RNA (mRNA) and ARG-1 mRNA. We also observed that monocyte chemotactic protein (MCP-1) increased significantly both in vivo and in vitro. Airway epithelium activates macrophages, most likely driven by MCP-1, which we confirmed in the coculture of epithelia and macrophages. These phenomena indicate that ITGB4 in airway epithelial cells plays an important role in the process of inflammation and activation of macrophages in ALI. Overall, these data demonstrated a novel link between airway epithelial ITGB4 and the inflammatory response in LPS-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Células Epiteliales/metabolismo , Integrina beta4/metabolismo , Pulmón/metabolismo , Neumonía/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Animales , Células Cultivadas , Técnicas de Cocultivo , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/patología , Humanos , Mediadores de Inflamación/metabolismo , Integrina beta4/genética , Lipopolisacáridos , Pulmón/inmunología , Pulmón/patología , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Noqueados , Infiltración Neutrófila , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neumonía/inducido químicamente , Neumonía/inmunología , Neumonía/patología
6.
Prep Biochem Biotechnol ; 51(3): 241-251, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32820988

RESUMEN

Endophytes may depend on degrading the plant cell wall with cellulases for their survival. Therefore, cellulase produced by endophytes may be useful in releasing the active ingredient of medicinal plants. Scutellaria baicalensis Georgi is a traditional Chinese medicinal plant widely used in China and baicalin is one of its main active ingredients. In this study, fresh S. baicalensis Georgi was used to isolate endophytes, Congo red staining was used to screen cellulase-producing strains, and HPLC was used to determine the content of baicalin in S. baicalensis Georgi. As a result, a highly active strain of endophyte capable of the extraction of high levels of baicalin was obtained. The strain was named HG-5 and identified as Bacillus sp. Scanning electron microscopy analysis confirmed that the enzyme better promotes the dissolution of plant active ingredients. After optimizing the enzyme production and extraction processes, we found that when compared with the traditional extraction method, the baicalin yield was increased 79.31% after extraction with the HG-5 enzyme. The current study provides a novel approach and method for the use of endophyte cellulase to improve the extraction of compounds from medicinal plants.


Asunto(s)
Flavonoides/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Plantas Medicinales/química , Scutellaria baicalensis/metabolismo , Bacillus/metabolismo , Pared Celular/metabolismo , Celulasa/química , Cromatografía Líquida de Alta Presión , Endófitos/metabolismo , Fermentación , Microscopía Electrónica de Rastreo , Filogenia , Extractos Vegetales/química , Análisis de Regresión
7.
Front Microbiol ; 11: 1489, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013716

RESUMEN

Plant seeds are not merely reproductive organs, they are also carriers of microorganism, particularly, inherent and non-invasive characteristic endophytes in host plant. Therefore, in this study, the endophytic diversity of Angelica seeds was studied and compared with endophytes isolated from healthy leaves, stems, roots, and seeds of A. sinensis using 20 different media. The metabolites of endophytic strains were evaluated with six different methods for their antioxidant activity and the paper disc diffusion method for antimicrobial activities. As a result, 226 endophytes were isolated. Compared with the biodiversity and abundance of uncultured fungi from Angelica seed, the result showed that the most frequent endophytic fungi were Alternaria sp. as seen in artificial media; moreover, compared with artificial media, the pathogenic fungi, including Fusarium sp. and Pseudallescheria sp., were not found from the Angelica seed, the results suggested it may not be inherent endophytes in plants. In addition, bacteria from seven phyla were identified by high-throughput sequencing, while five phyla of endophytic bacteria were not isolated on artificial media including Proteobacteria, Actinobacteria, Bacteroidetes, Microgenomates, and Saccharibacteria. Furthermore, the sample JH-4 mycelium displayed the best antioxidant activity, and the active constituent may be a flavonoid as determined by total phenol and flavonoid content. Moreover, YH-12-1 mycelium had strong inhibitory activity against the five tested strains and the minimum inhibitory concentration (MIC) against Pseudomonas aeruginosa and Streptococcus pneumoniae was found to be 25 µg/mL. Our results confirm that plant endophytes are rich in biodiversity and contain important resource of many uncultured microorganisms.

8.
Chem Commun (Camb) ; 56(7): 1101-1104, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31894773

RESUMEN

The stereospecific Fe-catalyzed arylation of enol tosylates was reported. Various tri- or tetrasubstituted Z or E-enol tosylates of ß-keto esters were arylated using common and Knochel-type Grignard reagents with complete stereofidelity. The precursors for Z/E-zimelidine, tamoxifen and other bioactive compounds were facilely prepared without precious and toxic transition metals.

9.
Folia Microbiol (Praha) ; 65(2): 293-302, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31273645

RESUMEN

Medicinal plants have been studied for potential endophytic interactions and numerous studies have provided evidence that seeds harbor diverse microbial communities, not only on their surfaces but also within the embryo. Adenosine deaminase (ADA) is known as a potential therapeutic target for the treatment of lymphoproliferative disorders and cancer. Therefore, in this study, 20 types of medicinal plant seeds were used to screen endophytic fungi with tissue homogenate and streak. In addition, 128 morphologically distinct endophyte strains were isolated and their ADA inhibitory activity determined by a spectrophotometric assay. The strain with the highest inhibitory activity was identified as Cochliobolus sp. Seven compounds were isolated from the strain using a chromatography method. Compound 3 showed the highest ADA inhibitory activity and was identified as 5-hydroxy-2-hydroxymethyl-4H-pyran-4-one, based on the results of 1H and 13C NMR spectroscopy. The results of molecular docking suggested that compound 3 binds to the active site and the nonspecific binding site of the ADA. Furthermore, we found that compound 3 is a mixed ADA inhibitor. These results indicate that endophytic strains are a promising source of ADA inhibitors and that compound 3 may be a superior source for use in the preparation of biologically active ADA inhibitor compounds used to treat cancer.


Asunto(s)
Inhibidores de la Adenosina Desaminasa/química , Ascomicetos/química , Endófitos/química , Plantas Medicinales/microbiología , Adenosina Desaminasa/química , Adenosina Desaminasa/metabolismo , Inhibidores de la Adenosina Desaminasa/farmacología , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Sitios de Unión , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Humanos , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Semillas/microbiología
10.
Comb Chem High Throughput Screen ; 22(2): 113-122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30987561

RESUMEN

BACKGROUND: Adenosine deaminase (ADA) is an important enzyme in purine metabolism and is known as a potential therapeutic target for the treatment of lymphoproliferative disorders and cancer. Traditional Chinese Herbal Medicine (TCHM) is widely used alone or in combination with chemotherapy to treat cancer, due to its ability to deliver a broad variety of bioactive secondary metabolites as promising sources of novel organic natural agents. OBJECTIVE: In the present study, 29 varieties of medicinal plants were screened for the presence of ADA inhibitors. RESULTS: Extracts from Reynoutria japonica, Glycyrrhiza uralensis, Lithospermum erythrorhizon, Magnolia officinalis, Gardenia jasminoides, Stephania tetrandra, Commiphora myrrha, Raphanus sativus and Corydalis yanhusuo demonstrated strong ADA inhibition with rates greater than 50%. However, Reynoutria japonica possessed the highest ADA inhibitory activity at 95.26% and so was used in our study for isolating the ADA inhibitor to be further studied. Eight compounds were obtained and their structures were identified. The compound H1 had strong ADA inhibitory activity and was deduced to be emodin by 1H and 13C-NMR spectroscopic analysis with an IC50 of 0.629 mM. The molecular docking data showed that emodin could bind tightly to the active site of ADA. Our results demonstrated that emodin displayed a new biological activity which is ADA inhibitory activity with high cytotoxic activity against K562 leukemia cells. The bioactivity of cordycepin was significantly increased when used in combination with emodin. CONCLUSION: Emodin may represent a good candidate anti-cancer therapy and adenosine protective agent.


Asunto(s)
Inhibidores de la Adenosina Desaminasa/farmacología , Antineoplásicos/farmacología , Emodina/farmacología , Medicina Tradicional China , Extractos Vegetales/química , Polygonaceae/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células K562
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA