Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Foods ; 12(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37297470

RESUMEN

To investigate the characteristic aromatic compounds, present in the traditional fermented koumiss of the Kazakh ethnic group in different regions of Xinjiang, GC-IMS, and GC-MS were used to analyze the volatile compounds in koumiss from four regions. A total of 87 volatile substances were detected, and esters, acids, and alcohols were found to be the main aroma compounds in koumiss. While the types of aroma compounds in koumiss were similar across different regions, the differences in their concentrations were significant and displayed clear regional characteristics. The fingerprint spectrum of GC-IMS, combined with PLS-DA analysis, indicates that eight distinctive volatile compounds, including ethyl butyrate, can be utilized to distinguish between different origins. Additionally, we analyzed the OVA value and sensory quantification of koumiss in different regions. We found that aroma components such as ethyl caprylate and ethyl caprate, which exhibit buttery and milky characteristics, were prominent in the YL and TC regions. In contrast, aroma components such as phenylethanol, which feature a floral fragrance, were more prominent in the ALTe region. The aroma profiles of koumiss from the four regions were defined. These studies provide theoretical guidance for the industrial production of Kazakh koumiss products.

2.
Foods ; 12(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36900592

RESUMEN

Mesenchymal stem cells (MSCs) can be used as a cell source for cultivated meat production due to their adipose differentiation potential, but MSCs lose their stemness and undergo replicative senescence during expansion in vitro. Autophagy is an important mechanism for senescent cells to remove toxic substances. However, the role of autophagy in the replicative senescence of MSCs is controversial. Here, we evaluated the changes in autophagy in porcine MSCs (pMSCs) during long-term culture in vitro and identified a natural phytochemical, ginsenoside Rg2, that could stimulate pMSC proliferation. First, some typical senescence characteristics were observed in aged pMSCs, including decreased EdU-positive cells, increased senescence-associated beta-galactosidase activity, declined stemness-associated marker OCT4 expression, and enhanced P53 expression. Importantly, autophagic flux was impaired in aged pMSCs, suggesting deficient substrate clearance in aged pMSCs. Rg2 was found to promote the proliferation of pMSCs using MTT assay and EdU staining. In addition, Rg2 inhibited D-galactose-induced senescence and oxidative stress in pMSCs. Rg2 increased autophagic activity via the AMPK signaling pathway. Furthermore, long-term culture with Rg2 promoted the proliferation, inhibited the replicative senescence, and maintained the stemness of pMSCs. These results provide a potential strategy for porcine MSC expansion in vitro.

3.
Foods ; 12(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36900600

RESUMEN

In this study, a rapid fluorescent and colorimetric dual-mode detection strategy for Hg2+ in seafoods was developed based on the cyclic binding of the organic fluorescent dye rhodamine 6G hydrazide (R6GH) to Hg2+. The luminescence properties of the fluorescent R6GH probe in different systems were investigated in detail. Based on the UV and fluorescence spectra, it was determined that the R6GH has good fluorescence intensity in acetonitrile and good selective recognition of Hg2+. Under optimal conditions, the R6GH fluorescent probe showed a good linear response to Hg2+ (R2 = 0.9888) in the range of 0-5 µM with a low detection limit of 2.5 × 10-2 µM (S/N = 3). A paper-based sensing strategy based on fluorescence and colorimetric analysis was developed for the visualization and semiquantitative analysis of Hg2+ in seafoods. The LAB values of the paper-based sensor impregnated with the R6GH probe solution showed good linearity (R2 = 0.9875) with Hg2+ concentration in the range of 0-50 µM, which means that the sensing paper can be combined with smart devices to provide reliable and efficient Hg2+ detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA