Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JACC Basic Transl Sci ; 8(3): 340-355, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37034289

RESUMEN

Apolipoprotein M (ApoM) binds sphingosine-1-phosphate (S1P) and is inversely associated with mortality in human heart failure (HF). Here, we show that anthracyclines such as doxorubicin (Dox) reduce circulating ApoM in mice and humans, that ApoM is inversely associated with mortality in patients with anthracycline-induced heart failure, and ApoM heterozygosity in mice increases Dox-induced mortality. In the setting of Dox stress, our studies suggest ApoM can help sustain myocardial autophagic flux in a post-transcriptional manner, attenuate Dox cardiotoxicity, and prevent lysosomal injury.

2.
J Clin Invest ; 132(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511433

RESUMEN

Microglia, the parenchymal tissue macrophages in the brain, surround amyloid plaques in brains of individuals with Alzheimer's disease (AD) but are ineffective at clearing amyloid to mitigate disease progression. Recent studies in mice indicate that microglia are derived exclusively from primitive yolk sac hematopoiesis and self-renew without contribution from ontogenically distinct monocytes/macrophages of definitive adult hematopoietic origin. Using a genetic fate-mapping approach to label cells of definitive hematopoietic origin throughout life span, we discovered that circulating monocytes contribute 6% of plaque-associated macrophages in aged AD mice. Moreover, peripheral monocytes contributed to a higher fraction of macrophages in the choroid plexus, meninges, and perivascular spaces of aged AD mice versus WT control mice, indicating enrichment at potential sites for entry into the brain parenchyma. Splenectomy, which markedly reduced circulating Ly6Chi monocytes, also reduced abundance of plaque-associated macrophages of definitive hematopoietic origin, resulting in increased amyloid plaque load. Together, these results indicate that peripherally derived monocytes invade the brain parenchyma, targeting amyloid plaques to reduce plaque load.


Asunto(s)
Enfermedad de Alzheimer , Placa Amiloide , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Microglía/metabolismo , Monocitos/metabolismo , Placa Amiloide/patología
3.
JACC Basic Transl Sci ; 7(3): 223-243, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35411325

RESUMEN

Mitochondria are essential for cardiac myocyte function, but damaged mitochondria trigger cardiac myocyte death. Although mitophagy, a lysosomal degradative pathway to remove damaged mitochondria, is robustly active in cardiac myocytes in the unstressed heart, its mechanisms and physiological role remain poorly defined. We discovered a critical role for TRAF2, an innate immunity effector protein with E3 ubiquitin ligase activity, in facilitating physiological cardiac myocyte mitophagy in the adult heart, to prevent inflammation and cell death, and maintain myocardial homeostasis.

4.
JACC Basic Transl Sci ; 7(12): 1214-1228, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36644282

RESUMEN

The key biological "drivers" that are responsible for reverse left ventricle (LV) remodeling are not well understood. To gain an understanding of the role of the autophagy-lysosome pathway in reverse LV remodeling, we used a pathophysiologically relevant murine model of reversible heart failure, wherein pressure overload by transaortic constriction superimposed on acute coronary artery (myocardial infarction) ligation leads to a heart failure phenotype that is reversible by hemodynamic unloading. Here we show transaortic constriction + myocardial infarction leads to decreased flux through the autophagy-lysosome pathway with the accumulation of damaged proteins and organelles in cardiac myocytes, whereas hemodynamic unloading is associated with restoration of autophagic flux to normal levels with incomplete removal of damaged proteins and organelles in myocytes and reverse LV remodeling, suggesting that restoration of flux is insufficient to completely restore myocardial proteostasis. Enhancing autophagic flux with adeno-associated virus 9-transcription factor EB resulted in more favorable reverse LV remodeling in mice that had undergone hemodynamic unloading, whereas overexpressing transcription factor EB in mice that have not undergone hemodynamic unloading leads to increased mortality, suggesting that the therapeutic outcomes of enhancing autophagic flux will depend on the conditions in which flux is being studied.

5.
Proc Natl Acad Sci U S A ; 117(50): 32105-32113, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33239446

RESUMEN

Cholesterol 25-hydroxylase (CH25H) is an interferon (IFN)-stimulated gene that shows broad antiviral activities against a wide range of enveloped viruses. Here, using an IFN-stimulated gene screen against vesicular stomatitis virus (VSV)-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of SARS-CoV-2 replication. Internalized 25HC accumulates in the late endosomes and potentially restricts SARS-CoV-2 spike protein catalyzed membrane fusion via blockade of cholesterol export. Our results highlight one of the possible antiviral mechanisms of 25HC and provide the molecular basis for its therapeutic development.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Endosomas/genética , Hidroxicolesteroles/farmacología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Antivirales/farmacología , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , Endosomas/metabolismo , Humanos , Interferones/metabolismo , Fusión de Membrana/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
6.
PLoS Biol ; 17(5): e3000245, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31086360

RESUMEN

Lysosomes are ubiquitous acidified organelles that degrade intracellular and extracellular material trafficked via multiple pathways. Lysosomes also sense cellular nutrient levels to regulate target of rapamycin (TOR) kinase, a signaling enzyme that drives growth and suppresses activity of the MiT/TFE family of transcription factors that control biogenesis of lysosomes. In this study, we subjected worms lacking basic helix-loop-helix transcription factor 30 (hlh-30), the Caenorhabditis elegans MiT/TFE ortholog, to starvation followed by refeeding to understand how this pathway regulates survival with variable nutrient supply. Loss of HLH-30 markedly impaired survival in starved larval worms and recovery upon refeeding bacteria. Remarkably, provision of simple nutrients in a completely defined medium (C. elegans maintenance medium [CeMM]), specifically glucose and linoleic acid, restored lysosomal acidification, TOR activation, and survival with refeeding despite the absence of HLH-30. Worms deficient in lysosomal lipase 2 (lipl-2), a lysosomal enzyme that is transcriptionally up-regulated in starvation in an HLH-30-dependent manner, also demonstrated increased mortality with starvation-refeeding that was partially rescued with glucose, suggesting a critical role for LIPL-2 in lipid metabolism under starvation. CeMM induced transcription of vacuolar proton pump subunits in hlh-30 mutant worms, and knockdown of vacuolar H+-ATPase 12 (vha-12) and its upstream regulator, nuclear hormone receptor 31 (nhr-31), abolished the rescue with CeMM. Loss of Ras-related GTP binding protein C homolog 1 RAGC-1, the ortholog for mammalian RagC/D GTPases, conferred starvation-refeeding lethality, and RAGC-1 overexpression was sufficient to rescue starved hlh-30 mutant worms, demonstrating a critical need for TOR activation with refeeding. These results show that HLH-30 activation is critical for sustaining survival during starvation-refeeding stress via regulating TOR. Glucose and linoleic acid bypass the requirement for HLH-30 in coupling lysosome nutrient sensing to survival.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Lisosomas/metabolismo , Nutrientes , Animales , Núcleo Celular/metabolismo , Ciclo del Ácido Cítrico , Medios de Cultivo , Metabolismo Energético/genética , Conducta Alimentaria , Ácido Linoleico/metabolismo , Lipasa/metabolismo , Metaboloma , Mutación/genética , Fenotipo , Bombas de Protones/metabolismo , Inanición/metabolismo , Estrés Fisiológico/genética , Análisis de Supervivencia , Activación Transcripcional/genética
7.
J Am Heart Assoc ; 8(4): e010866, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30773991

RESUMEN

Background Mutations in αB-crystallin result in proteotoxic cardiomyopathy with desmin mislocalization to protein aggregates. Intermittent fasting ( IF ) is a novel approach to activate transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in the myocardium. We tested whether TFEB activation can be harnessed to treat advanced proteotoxic cardiomyopathy. Methods and Results Mice overexpressing the R120G mutant of αB-crystallin in cardiomyocytes ( Myh6-Cry ABR 120G) were subjected to IF or ad-lib feeding, or transduced with adeno-associated virus- TFEB or adeno-associated virus-green fluorescent protein after development of advanced proteotoxic cardiomyopathy. Adeno-associated virus-short hairpin RNA-mediated knockdown of TFEB and HSPB 8 was performed simultaneously with IF . Myh6-Cry ABR 120G mice demonstrated impaired autophagic flux, reduced lysosome abundance, and mammalian target of rapamycin activation in the myocardium. IF resulted in mammalian target of rapamycin inhibition and nuclear translocation of TFEB with restored lysosome abundance and autophagic flux; and reduced aggregates with normalized desmin localization. IF also attenuated left ventricular dilation and myocardial hypertrophy, increased percentage fractional shortening, and increased survival. Adeno-associated virus- TFEB transduction was sufficient to rescue cardiomyopathic manifestations, and resulted in reduced aggregates and normalized desmin localization in Myh6-Cry ABR 120G mice. Cry ABR 120G-expressing hearts demonstrated increased interaction of desmin with αB-crystallin and reduced interaction with chaperone protein, HSPB 8, compared with wild type, which was reversed by both IF and TFEB transduction. TFEB stimulated autophagic flux to remove protein aggregates and transcriptionally upregulated HSPB 8, to restore normal desmin localization in Cry ABR 120G-expressing cardiomyocytes. Short hairpin RNA-mediated knockdown of TFEB and HSPB 8 abrogated IF effects, in vivo. Conclusions IF and TFEB activation are clinically relevant therapeutic strategies to rescue advanced R120G αB-crystallin mutant-induced cardiomyopathy by normalizing desmin localization via autophagy-dependent and autophagy-independent mechanisms.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Cardiomiopatías/genética , ADN Mitocondrial/genética , Desmina/metabolismo , Mutación , Cadena B de alfa-Cristalina/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Cardiomiopatías/diagnóstico , Cardiomiopatías/metabolismo , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Cadena B de alfa-Cristalina/metabolismo
8.
Circ Heart Fail ; 10(12)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29203562

RESUMEN

BACKGROUND: Sustained inflammation in the heart is sufficient to provoke left ventricular dysfunction and left ventricular remodeling. Although inflammation has been linked to many of the biological changes responsible for adverse left ventricular remodeling, the relationship between inflammation and protein quality control in the heart is not well understood. METHODS AND RESULTS: To study the relationship between chronic inflammation and protein quality control, we used a mouse model of dilated cardiomyopathy driven by cardiac restricted overexpression of TNF (tumor necrosis factor; Myh6-sTNF). Myh6-sTNF mice develop protein aggregates containing ubiquitin-tagged proteins within cardiac myocytes related to proteasome dysfunction and impaired autophagy. The 26S proteasome was dysfunctional despite normal function of the core 20S subunit. We found an accumulation of autophagy substrates in Myh6-sTNF mice, which were also seen in tissue from patients with end-stage heart failure. Moreover, there was evidence of impaired autophagosome clearance after chloroquine administration in these mice indicative of impaired autophagic flux. Finally, there was increased mammalian target of rapamycin complex 1 (mTORC1) activation, which has been linked to inhibition of both the proteasome and autophagy. CONCLUSIONS: Myh6-sTNF mice with sustained inflammatory signaling develop proteasome dysfunction and impaired autophagic flux that is associated with enhanced mTORC1 activation.


Asunto(s)
Cardiomiopatía Dilatada/enzimología , Ventrículos Cardíacos/enzimología , Mediadores de Inflamación/metabolismo , Miocitos Cardíacos/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Disfunción Ventricular Izquierda/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Autofagosomas/enzimología , Autofagosomas/patología , Autofagia , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Transgénicos , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Fenotipo , Regiones Promotoras Genéticas , Agregado de Proteínas , Agregación Patológica de Proteínas , Factores de Tiempo , Factor de Necrosis Tumoral alfa/genética , Ubiquitinación , Regulación hacia Arriba , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
9.
Autophagy ; 13(11): 1952-1968, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28853981

RESUMEN

Obesity-induced diabetes is characterized by hyperglycemia, insulin resistance, and progressive beta cell failure. In islets of mice with obesity-induced diabetes, we observe increased beta cell death and impaired autophagic flux. We hypothesized that intermittent fasting, a clinically sustainable therapeutic strategy, stimulates autophagic flux to ameliorate obesity-induced diabetes. Our data show that despite continued high-fat intake, intermittent fasting restores autophagic flux in islets and improves glucose tolerance by enhancing glucose-stimulated insulin secretion, beta cell survival, and nuclear expression of NEUROG3, a marker of pancreatic regeneration. In contrast, intermittent fasting does not rescue beta-cell death or induce NEUROG3 expression in obese mice with lysosomal dysfunction secondary to deficiency of the lysosomal membrane protein, LAMP2 or haplo-insufficiency of BECN1/Beclin 1, a protein critical for autophagosome formation. Moreover, intermittent fasting is sufficient to provoke beta cell death in nonobese lamp2 null mice, attesting to a critical role for lysosome function in beta cell homeostasis under fasting conditions. Beta cells in intermittently-fasted LAMP2- or BECN1-deficient mice exhibit markers of autophagic failure with accumulation of damaged mitochondria and upregulation of oxidative stress. Thus, intermittent fasting preserves organelle quality via the autophagy-lysosome pathway to enhance beta cell survival and stimulates markers of regeneration in obesity-induced diabetes.


Asunto(s)
Autofagia , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/patología , Ayuno , Células Secretoras de Insulina/patología , Lisosomas/metabolismo , Obesidad/complicaciones , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Beclina-1/genética , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Tipo 2/etiología , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Ratones , Ratones Mutantes , Mitocondrias/patología , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo , Regulación hacia Arriba
10.
Cell Metab ; 24(1): 158-66, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27374498

RESUMEN

Remodeling of the tricarboxylic acid (TCA) cycle is a metabolic adaptation accompanying inflammatory macrophage activation. During this process, endogenous metabolites can adopt regulatory roles that govern specific aspects of inflammatory response, as recently shown for succinate, which regulates the pro-inflammatory IL-1ß-HIF-1α axis. Itaconate is one of the most highly induced metabolites in activated macrophages, yet its functional significance remains unknown. Here, we show that itaconate modulates macrophage metabolism and effector functions by inhibiting succinate dehydrogenase-mediated oxidation of succinate. Through this action, itaconate exerts anti-inflammatory effects when administered in vitro and in vivo during macrophage activation and ischemia-reperfusion injury. Using newly generated Irg1(-/-) mice, which lack the ability to produce itaconate, we show that endogenous itaconate regulates succinate levels and function, mitochondrial respiration, and inflammatory cytokine production during macrophage activation. These studies highlight itaconate as a major physiological regulator of the global metabolic rewiring and effector functions of inflammatory macrophages.


Asunto(s)
Inflamación/enzimología , Inflamación/patología , Macrófagos/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinatos/farmacología , Animales , Respiración de la Célula/efectos de los fármacos , Femenino , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Macrófagos/patología , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/enzimología , Daño por Reperfusión/patología , Succinato Deshidrogenasa/metabolismo , Ácido Succínico/metabolismo
11.
J Neurosci ; 35(35): 12137-51, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26338325

RESUMEN

In AD, an imbalance between Aß production and removal drives elevated brain Aß levels and eventual amyloid plaque deposition. APP undergoes nonamyloidogenic processing via α-cleavage at the plasma membrane, amyloidogenic ß- and γ-cleavage within endosomes to generate Aß, or lysosomal degradation in neurons. Considering multiple reports implicating impaired lysosome function as a driver of increased amyloidogenic processing of APP, we explored the efficacy of targeting transcription factor EB (TFEB), a master regulator of lysosomal pathways, to reduce Aß levels. CMV promoter-driven TFEB, transduced via stereotactic hippocampal injections of adeno-associated virus particles in APP/PS1 mice, localized primarily to neuronal nuclei and upregulated lysosome biogenesis. This resulted in reduction of APP protein, the α and ß C-terminal APP fragments (CTFs), and in the steady-state Aß levels in the brain interstitial fluid. In aged mice, total Aß levels and amyloid plaque load were selectively reduced in the TFEB-transduced hippocampi. TFEB transfection in N2a cells stably expressing APP695, stimulated lysosome biogenesis, reduced steady-state levels of APP and α- and ß-CTFs, and attenuated Aß generation by accelerating flux through the endosome-lysosome pathway. Cycloheximide chase assays revealed a shortening of APP half-life with exogenous TFEB expression, which was prevented by concomitant inhibition of lysosomal acidification. These data indicate that TFEB enhances flux through lysosomal degradative pathways to induce APP degradation and reduce Aß generation. Activation of TFEB in neurons is an effective strategy to attenuate Aß generation and attenuate amyloid plaque deposition in AD. SIGNIFICANCE STATEMENT: A key driver for AD pathogenesis is the net balance between production and clearance of Aß, the major component of amyloid plaques. Here we demonstrate that lysosomal degradation of holo-APP influences Aß production by limiting the availability of APP for amyloidogenic processing. Using viral gene transfer of transcription factor EB (TFEB), a master regulator of lysosome biogenesis in neurons of APP/PS1 mice, steady-state levels of APP were reduced, resulting in decreased interstitial fluid Aß levels and attenuated amyloid deposits. These effects were caused by accelerated lysosomal degradation of endocytosed APP, reflected by reduced APP half-life and steady-state levels in TFEB-expressing cells, with resultant decrease in Aß production and release. Additional studies are needed to explore the therapeutic potential of this approach.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Lisosomas/metabolismo , Neuronas/metabolismo , Placa Amiloide/metabolismo , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Encéfalo/patología , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Dependovirus/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lisosomas/genética , Lisosomas/patología , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Mutación/genética , Neuroblastoma/patología , Neuronas/patología , Placa Amiloide/genética , Placa Amiloide/patología , Presenilina-1/genética
12.
Autophagy ; 11(9): 1537-60, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26103523

RESUMEN

Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury.


Asunto(s)
Autofagia , Ayuno , Lisosomas/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Citoprotección/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Conducta Alimentaria , Femenino , Ontología de Genes , Heterocigoto , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Miocardio/ultraestructura , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Oxígeno/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética/efectos de los fármacos , Ultrasonografía , Regulación hacia Arriba/efectos de los fármacos , Remodelación Ventricular
13.
Sci Signal ; 8(382): ra62, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26106220

RESUMEN

The endoplasmic reticulum (ER) has emerged as a critical regulator of cell survival. IRE1 is a transmembrane protein with kinase and RNase activities that is localized to the ER and that promotes resistance to ER stress. We showed a mechanism by which IRE1 conferred protection against ER stress-mediated cell death. IRE1 signaling prevented ER membrane permeabilization mediated by Bax and Bak and cell death in cells experiencing ER stress. Suppression of IRE1 signaling triggered by its kinase activity led to the accumulation of the BH3 domain-containing protein Bnip3, which in turn triggered the oligomerization of Bax and Bak in the ER membrane and ER membrane permeabilization. Consequently, in response to ER stress, cells deficient in IRE1 were susceptible to leakage of ER contents, which was associated with the accumulation of calcium in mitochondria, oxidative stress in the cytosol, and ultimately cell death. Our results reveal a role for IRE1 in preventing a cell death-initializing step that emanates from the ER and provide a potential target for treating diseases characterized by ER stress, including diabetes and Wolfram syndrome.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Muerte Celular/genética , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Retículo Endoplásmico/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Permeabilidad , Proteínas Serina-Treonina Quinasas/genética , Síndrome de Wolfram/genética , Síndrome de Wolfram/metabolismo
14.
Mol Cell Biol ; 35(6): 956-76, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25561470

RESUMEN

In cardiac ischemia-reperfusion injury, reactive oxygen species (ROS) generation and upregulation of the hypoxia-inducible protein BNIP3 result in mitochondrial permeabilization, but impairment in autophagic removal of damaged mitochondria provokes programmed cardiomyocyte death. BNIP3 expression and ROS generation result in upregulation of beclin-1, a protein associated with transcriptional suppression of autophagy-lysosome proteins and reduced activation of transcription factor EB (TFEB), a master regulator of the autophagy-lysosome machinery. Partial beclin-1 knockdown transcriptionally stimulates lysosome biogenesis and autophagy via mTOR inhibition and activation of TFEB, enhancing removal of depolarized mitochondria. TFEB activation concomitantly stimulates mitochondrial biogenesis via PGC1α induction to restore normally polarized mitochondria and attenuate BNIP3- and hypoxia-reoxygenation-induced cell death. Conversely, overexpression of beclin-1 activates mTOR to inhibit TFEB, resulting in declines in lysosome numbers and suppression of PGC1α transcription. Importantly, knockdown of endogenous TFEB or PGC1α results in a complete or partial loss, respectively, of the cytoprotective effects of partial beclin-1 knockdown, indicating a critical role for both mitochondrial autophagy and biogenesis in ensuring cellular viability. These studies uncover a transcriptional feedback loop for beclin-1-mediated regulation of TFEB activation and implicate a central role for TFEB in coordinating mitochondrial autophagy with biogenesis to restore normally polarized mitochondria and prevent ischemia-reperfusion-induced cardiomyocyte death.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Muerte Celular/genética , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Células Cultivadas , Células HEK293 , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Factores de Transcripción/genética , Transcripción Genética/genética
15.
Circ Heart Fail ; 8(1): 175-87, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25339503

RESUMEN

BACKGROUND: Tumor necrosis factor (TNF) signaling protects against ischemia/reperfusion-induced cardiomyocyte death, in vitro, ex vivo, and in vivo. TNF-receptor-associated factor 2 (TRAF2), an E3 ubiquitin ligase, coordinates cytoprotective signaling downstream of both TNF receptors, via unclear mechanisms. Noting that TRAF2 is recruited to mitochondria, and that autophagic removal of ubiquitin-tagged damaged mitochondria is cytoprotective, we tested the hypothesis that TRAF2 mediates mitochondrial autophagy. METHODS AND RESULTS: TRAF2 localizes to the mitochondria in neonatal rat cardiac myocytes, and TNF treatment transcriptionally upregulates TRAF2 abundance in the mitochondrial subfraction. TRAF2 colocalizes with ubiquitin, p62 adaptor protein, and mitochondria within LC3-bound autophagosomes; and exogenous TRAF2 enhances autophagic removal of mitochondria. TRAF2 knockdown with adenoviral shRNA transduction induces accumulation of depolarized mitochondria in resting neonatal rat cardiac myocytes, as well as in those treated with TNF or uncoupling agent carbonyl cyanide m-chlorophenyl hydrazone, suggesting an essential role for TRAF2 in homeostatic and stress-induced mitochondrial autophagy. TRAF2 also colocalizes and interacts with PARKIN, a previously described E3 ubiquitin ligase and mitophagy effector, on depolarized mitochondria in neonatal rat cardiac myocytes. Exogenous expression of TRAF2, but not its E3 ligase-deficient mutants, is sufficient to partially restore mitophagy in the setting of PARKIN knockdown, suggesting redundancy in their ubiquitin ligase roles. TRAF2 abundance increases in the mitochondrial subfraction of ischemia/reperfusion-modeled hearts; and exogenous TRAF2, but not its E3 ligase-deficient mutants, reduces depolarized mitochondria and rescues cell death in neonatal rat cardiac myocytes subjected to hypoxia/reoxygenation. CONCLUSIONS: Taken together, these data indicate an essential role for TRAF2 in concert with PARKIN as a mitophagy effector, which contributes to TRAF2-induced cytoprotective signaling.


Asunto(s)
Autofagia , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Factor 2 Asociado a Receptor de TNF/metabolismo , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Ratas , Transducción de Señal
16.
J Neurosci ; 34(29): 9607-20, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25031402

RESUMEN

In sporadic Alzheimer's disease (AD), impaired Aß removal contributes to elevated extracellular Aß levels that drive amyloid plaque pathogenesis. Extracellular proteolysis, export across the blood-brain barrier, and cellular uptake facilitate physiologic Aß clearance. Astrocytes can take up and degrade Aß, but it remains unclear whether this function is insufficient in AD or can be enhanced to accelerate Aß removal. Additionally, age-related dysfunction of lysosomes, the major degradative organelles wherein Aß localizes after uptake, has been implicated in amyloid plaque pathogenesis. We tested the hypothesis that enhancing lysosomal function in astrocytes with transcription factor EB (TFEB), a master regulator of lysosome biogenesis, would promote Aß uptake and catabolism and attenuate plaque pathogenesis. Exogenous TFEB localized to the nucleus with transcriptional induction of lysosomal biogenesis and function in vitro. This resulted in significantly accelerated uptake of exogenously applied Aß42, with increased localization to and degradation within lysosomes in C17.2 cells and primary astrocytes, indicating that TFEB is sufficient to coordinately enhance uptake, trafficking, and degradation of Aß. Stereotactic injection of adeno-associated viral particles carrying TFEB driven by a glial fibrillary acidic protein promoter was used to achieve astrocyte-specific expression in the hippocampus of APP/PS1 transgenic mice. Exogenous TFEB localized to astrocyte nuclei and enhanced lysosome function, resulting in reduced Aß levels and shortened half-life in the brain interstitial fluid and reduced amyloid plaque load in the hippocampus compared with control virus-injected mice. Therefore, activation of TFEB in astrocytes is an effective strategy to restore adequate Aß removal and counter amyloid plaque pathogenesis in AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Lisosomas/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/genética , Animales , Animales Recién Nacidos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Placa Amiloide/genética , Placa Amiloide/metabolismo , Presenilina-1/genética , Transfección
17.
Autophagy ; 8(9): 1394-6, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22889942

RESUMEN

Accumulating evidence attests to a prosurvival role for autophagy under stress, by facilitating removal of damaged proteins and organelles and recycling basic building blocks, which can be utilized for energy generation and targeted macromolecular synthesis to shore up cellular defenses. These observations are difficult to reconcile with the dichotomous prosurvival and death-inducing roles ascribed to macroautophagy in cardiac ischemia and reperfusion injury, respectively. A careful reexamination of 'flux' through the macroautophagy pathway reveals that autophagosome clearance is markedly impaired with reperfusion (reoxygenation) in cardiomyocytes following an ischemic (hypoxic) insult, resulting from reactive oxygen species (ROS)-mediated decline in LAMP2 and increase in BECN1 abundance. This results in impaired autophagy that is 'ineffective' in protecting against cell death with ischemia-reperfusion injury. Restoration of autophagosome clearance and by inference, 'adequate' autophagy, attenuates reoxygenation-induced cell death.


Asunto(s)
Autofagia , Daño por Reperfusión Miocárdica/patología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/genética , Beclina-1 , Redes Reguladoras de Genes/genética , Lisosomas/metabolismo , Ratones , Modelos Biológicos , Fagosomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
Circulation ; 125(25): 3170-81, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22592897

RESUMEN

BACKGROUND: In myocardial ischemia, induction of autophagy via the AMP-induced protein kinase pathway is protective, whereas reperfusion stimulates autophagy with BECLIN-1 upregulation and is implicated in causing cell death. We examined flux through the macroautophagy pathway as a determinant of the discrepant outcomes in cardiomyocyte cell death in this setting. METHODS AND RESULTS: Reversible left anterior descending coronary artery ligation was performed in mice with cardiomyocyte-restricted expression of green fluorescent protein-tagged microtubule-associated protein light chain-3 to induce ischemia (120 minutes) or ischemia/reperfusion (30-90 minutes) with saline or chloroquine pretreatment (n=4 per group). Autophagosome clearance, assessed as the ratio of punctate light chain-3 abundance in saline to chloroquine-treated samples, was markedly impaired with ischemia/reperfusion compared with sham controls. Reoxygenation increased cell death in neonatal rat cardiomyocytes compared with hypoxia alone, markedly increased autophagosomes but not autolysosomes (assessed as punctate dual fluorescent mCherry-green fluorescent protein tandem-tagged light chain-3 expression), and impaired clearance of polyglutamine aggregates, indicating impaired autophagic flux. The resultant autophagosome accumulation was associated with increased reactive oxygen species and mitochondrial permeabilization, leading to cell death, which was attenuated by cyclosporine A pretreatment. Hypoxia-reoxygenation injury was accompanied by reactive oxygen species-mediated BECLIN-1 upregulation and a reduction in lysosome-associated membrane protein-2, a critical determinant of autophagosome-lysosome fusion. Restoration of lysosome-associated membrane protein-2 levels synergizes with partial BECLIN-1 knockdown to restore autophagosome processing and to attenuate cell death after hypoxia-reoxygenation. CONCLUSION: Ischemia/reperfusion injury impairs autophagosome clearance mediated in part by reactive oxygen species-induced decline in lysosome-associated membrane protein-2 and upregulation of BECLIN-1, contributing to increased cardiomyocyte death.


Asunto(s)
Autofagia , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Fagosomas/patología , Animales , Proteínas Reguladoras de la Apoptosis/biosíntesis , Proteínas Reguladoras de la Apoptosis/deficiencia , Proteínas Reguladoras de la Apoptosis/genética , Autofagia/genética , Beclina-1 , Muerte Celular/genética , Técnicas de Silenciamiento del Gen , Hipoxia/genética , Hipoxia/metabolismo , Hipoxia/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/antagonistas & inhibidores , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Daño por Reperfusión Miocárdica/genética , Miocitos Cardíacos/metabolismo , Fagosomas/genética , Fagosomas/metabolismo , Ratas , Especies Reactivas de Oxígeno/toxicidad , Regulación hacia Arriba/genética
19.
Autophagy ; 8(3): 297-309, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22302006

RESUMEN

Hypoxia-inducible pro-death protein BNIP3 (BCL-2/adenovirus E1B 19-kDa interacting protein 3), provokes mitochondrial permeabilization causing cardiomyocyte death in ischemia-reperfusion injury. Inhibition of autophagy accelerates BNIP3-induced cell death, by preventing removal of damaged mitochondria. We tested the hypothesis that stimulating autophagy will attenuate BNIP3-induced cardiomyocyte death. Neonatal rat cardiac myocytes (NRCMs) were adenovirally transduced with BNIP3 (or LacZ as control; at multiplicity of infection = 100); and autophagy was stimulated with rapamycin (100 nM). Cell death was assessed at 48 h. BNIP3 expression increased autophagosome abundance 8-fold and caused a 3.6-fold increase in cardiomyocyte death as compared with control. Rapamycin treatment of BNIP3-expressing cells led to further increase in autophagosome number without affecting cell death. BNIP3 expression led to accumulation of autophagosome-bound LC3-II and p62, and an increase in autophagosomes, but not autolysosomes (assessed with dual fluorescent mCherry-GFP-LC3 expression). BNIP3, but not the transmembrane deletion variant, interacted with LC3 and colocalized with mitochondria and lysosomes. However, BNIP3 did not target to lysosomes by subcellular fractionation, provoke lysosome permeabilization or alter lysosome pH. Rather, BNIP3-induced autophagy caused a decline in lysosome numbers with decreased expression of the lysosomal protein LAMP-1, indicating lysosome consumption and consequent autophagosome accumulation. Forced expression of transcription factor EB (TFEB) in BNIP3-expressing cells increased lysosome numbers, decreased autophagosomes and increased autolysosomes, prevented p62 accumulation, removed depolarized mitochondria and attenuated BNIP3-induced death. We conclude that BNIP3 expression induced autophagosome accumulation with lysosome consumption in cardiomyocytes. Forced expression of TFEB, a lysosomal biogenesis factor, restored autophagosome processing and attenuated BNIP3-induced cell death.


Asunto(s)
Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ácidos/metabolismo , Animales , Animales Recién Nacidos , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Muerte Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Lisosomas/efectos de los fármacos , Proteínas de la Membrana/química , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales , Miocitos Cardíacos/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/química , Ratas , Ratas Sprague-Dawley , Sirolimus/farmacología
20.
Mol Ther ; 18(2): 334-42, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19844196

RESUMEN

Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to deficiency in alpha-L-iduronidase (IDUA) that results in accumulation of glycosaminoglycans (GAGs) throughout the body, causing numerous clinical defects. Intravenous administration of a gamma-retroviral vector (gamma-RV) with an intact long terminal repeat (LTR) reduced the clinical manifestations of MPS I, but could cause insertional mutagenesis. Although self-inactivating (SIN) gamma-RVs in which the enhancer and promoter elements in the viral LTR are absent after transduction reduces this risk, such vectors could be less effective. This report demonstrates that intravenous (i.v.) injection of a SIN gamma-RV expressing canine IDUA from the liver-specific human alpha(1)-antitrypsin promoter into adult or newborn MPS I mice completely prevents biochemical abnormalities in several organs, and improved bone disease, vision, hearing, and aorta to a similar extent as was seen with administration of the LTR-intact vector to adults. Improvements were less profound than when using an LTR-intact gamma-RV in newborns, which likely reflects a lower level of transduction and expression for the SIN vector-transduced mice, and might be overcome by using a higher dose of SIN vector. A SIN gamma-RV vector ameliorates clinical manifestations of MPS I in mice and should be safer than an LTR-intact gamma-RV.


Asunto(s)
Vectores Genéticos/genética , Mucopolisacaridosis I/terapia , Retroviridae/genética , Animales , Perros , Terapia Genética/métodos , Humanos , Iduronidasa/genética , Iduronidasa/fisiología , Marmota , Ratones , Regiones Promotoras Genéticas/genética , Secuencias Repetidas Terminales/genética , Secuencias Repetidas Terminales/fisiología , alfa 1-Antitripsina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...