Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharm Pharmacol ; 76(4): 405-415, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38241142

RESUMEN

OBJECTIVE: To investigate the mechanism of Ling-Gui-Zhu-Gan decoction (LGZGD) protects against doxorubicin (DOX)-induced myocardial injury. METHODS: In vivo experiment, rats were divided into six groups: normal group, model group (15 mg/kg, DOX), Dex group(150 mg/kg, Dex), LGZGD-L group (2.1 g/kg), LGZGD-M group (4.2 g/kg), and LGZGD-H group (8.4 g/kg). We used HE and Masson staining to observe the histopathological changes, echocardiography to assess the cardiac function, and western blot and RT-qPCR to detect the expressions of Nrf2, GPX4, Fpn1, and Ptgs2. In vitro experiment, we used immunofluorescence to detect ROS production, and RT-qPCR to detect gene expression of GPX4, Fpn1, and Ptgs2. KEY FINDINGS: In vivo, LGZGD improved cardiac systolic function. LGZGD significantly reduced MDA, LDH, and CK levels, increased SOD activity, enhanced the protein expression of Nrf2, GPX4, and Fpn1, and decreased Ptgs2 levels. In vitro, LGZGD-containing serum significantly reduced ROS, increased the gene expression of GPX4 and Fpn1, and decreased the gene expression of Ptgs2. Furthermore, compared with the LGZGD (si-NC) group, the LGZGD (si-Nrf2) group had decreased gene expression of Nrf2, GPX4, and Fpn1 and increased gene expression of Ptgs2. CONCLUSIONS: LGZGD can ameliorate DOX-cardiotoxicity by activating the Nrf2 signaling pathway and inhibiting ferroptosis in cardiomyocytes.


Asunto(s)
Ferroptosis , Extractos Vegetales , Ratas , Animales , Ciclooxigenasa 2 , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Doxorrubicina/toxicidad
2.
Inflammopharmacology ; 31(4): 1715-1729, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37261627

RESUMEN

Cardiovascular diseases (CVDs) are a leading cause of global mortality and have a high incidence rate worldwide. The function of inflammasomes in CVDs has received a lot of attention recently, and the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome may be a new target for the prevention and treatment of CVDs. Flavonoids, which are found in food and plant extracts, inhibited inflammation in CVDs by regulating the NLRP3 inflammasome. CB-Dock was used to investigate whether 34 flavonoids from natural products acted on NLRP3 inflammasome. In brief, the PDB format of NLRP3 was selected as a protein file, and 34 flavonoids in SDF format were selected as the ligand file, and then input to CB-Dock for molecular docking. The docking results showed that epigallocatechin-3-gallate (EGCG), amentoflavone, baicalin, scutellarin, vitexin, silibinin, and puerarin had good binding affinities to NLRP3, which could be used as NLRP3 inhibitors, and aid in the discovery of lead compounds for the design and development of CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Inflamasomas , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Flavonoides/farmacología
3.
Inflammopharmacology ; 31(1): 207-220, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36609715

RESUMEN

Cardiovascular diseases (CVDs) are currently the major cause of death and morbidity on a global scale. Thioredoxin-interacting protein (TXNIP) is a marker related to metabolism, oxidation, and inflammation induced in CVDs. The overexpression of TXNIP is closely related to the occurrence and development of CVDs. Hence, TXNIP inhibition is critical for reducing the overactivation of its downstream signaling pathway and, as a result, myocardial cell damage. Due to the chemical variety of dietary phytochemicals, they have garnered increased interest for CVDs prevention and therapy. Phytochemicals are a source of medicinal compounds for a variety of conditions, which aids in the development of effective and safe TXNIP-targeting medications. The objective of this article is to find and virtual screen novel safe, effective, and economically viable TXNIP inhibitors from flavonoids, phenols, and alkaloids derived from foods and plants. The results of the docking study revealed that silibinin, rutin, luteolin, baicalin, procyanidin B2, hesperetin, icariin, and tilianin in flavonoids, polydatin, resveratrol, and salidroside in phenols, and neferine in alkaloids had the highest Vina scores, indicating that these compounds are the active chemicals on TXNIP. In particular, silibinin can be utilized as a lead chemical in the process of structural alteration. These dietary phytochemicals may aid in the discovery of lead compounds for the development of innovative TXNIP agents for the treatment of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Silibina , Flavonoides , Fenoles , Fitoquímicos , Tiorredoxinas/metabolismo , Proteínas Portadoras
4.
J Food Biochem ; 46(12): e14376, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35945702

RESUMEN

Coronary heart disease (CHD) is defined by atherosclerosis, which can result in stenosis or blockage of the arterial cavity, leading to ischemic cardiac diseases such as angina and myocardial infarction. Accumulating evidence indicates that the gut microbiota plays a vital role in the beginning and progression of CHD. The gut microbial metabolite, trimethylamine-N-oxide (TMAO), is intimately linked to the pathophysiology of CHD. TMAO is formed when trimethylamine (TMA) is converted by flavin-containing monooxygenases in the hepatocytes. Therefore, inhibition of TMA production is essential to reduce TMAO levels. Flavonoids may reduce the risk of death from cardiovascular disease. In this article, we reviewed and evaluated twenty-two flavonoids for the therapy of CHD based on their inhibition of TMA-lyase by molecular docking. Docking results revealed that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had a good binding effect with TMA-lyase. This indicates that these chemicals were the most active and could be used as lead compounds for structural modification in the future. PRACTICAL APPLICATIONS: Flavonoids are a large class of polyphenolic compounds found in fruits, vegetables, flowers, tea, and herbal medicines, which are inexorably metabolized and transformed into bioactive metabolites by α-rhamnosidase, ß-glucuronidase, ß-glucosidase, and nitroreductase produced by the gut microbiota, which plays a beneficial role in the prevention and treatment of cardiovascular diseases. Because flavonoids protect the cardiovascular system and regulate the gut microbiota, and the gut microbiota is directly connected to TMAO, thus, reducing TMAO levels involves blocking the transition of TMA to TMAO, which may be performed by reducing TMA synthesis. Molecular docking results found that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had good binding effects on TMA-lyase, which were the most active and could be used as lead compounds for structural modification.


Asunto(s)
Enfermedad Coronaria , Hesperidina , Liasas , Humanos , Simulación del Acoplamiento Molecular , Flavonoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...