Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Int Med Res ; 52(5): 3000605241247695, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775372

RESUMEN

Giant choledochal cysts are rare, and so little data exist on the best surgical treatment method. We present here, a case of a giant choledochal cyst that was successfully excised by laparoscopic resection. A 37-year-old female presented with right upper abdominal pain and mild jaundice. On examination she had a right upper abdominal mass which on imaging was observed to be a giant choledochal cyst of type IVa, measuring approximately 129 mm × 190 mm. Her blood test results showed abnormal liver function. We successfully performed laparoscopic resection of the cyst, the patient recovered well and was discharged from hospital eight days post-operation without any complications. We wish to share the experience of this rare case and provide some clinical basis for future diagnosis and use of laparoscopic resection in the treatment of giant choledochal cysts.


Asunto(s)
Quiste del Colédoco , Laparoscopía , Humanos , Quiste del Colédoco/cirugía , Quiste del Colédoco/diagnóstico , Quiste del Colédoco/diagnóstico por imagen , Femenino , Adulto , Laparoscopía/métodos , Tomografía Computarizada por Rayos X
2.
Light Sci Appl ; 13(1): 100, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693126

RESUMEN

Photoacoustic spectroscopy (PAS) as a highly sensitive and selective trace gas detection technique has extremely broad application in many fields. However, the laser sources currently used in PAS limit the sensing performance. Compared to diode laser and quantum cascade laser, the solid-state laser has the merits of high optical power, excellent beam quality, and wide tuning range. Here we present a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser used as light source in a PAS sensor for trace gas detection. The self-built solid-state laser had an emission wavelength of ~2 µm with Tm:YAP crystal as the gain material, with an excellent wavelength and optical power stability as well as a high beam quality. The wide wavelength tuning range of 9.44 nm covers the absorption spectra of water and ammonia, with a maximum optical power of ~130 mW, allowing dual gas detection with a single laser source. The solid-state laser was used as light source in three different photoacoustic detection techniques: standard PAS with microphone, and external- and intra-cavity quartz-enhanced photoacoustic spectroscopy (QEPAS), proving that solid-state laser is an attractive excitation source in photoacoustic spectroscopy.

3.
Opt Lett ; 49(10): 2765-2768, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748156

RESUMEN

In this Letter, a quasi-distributed quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensing system based on hollow waveguide micropores (HWGMP) was reported for the first time, to the best of our knowledge. Three micropores were developed on the HWG to achieve distributed detection units. Three self-designed quartz tuning forks (QTFs) with low resonant frequency of 8.7 kHz were selected as the acoustic wave transducer to improve the detection performance. Compared with micro-nano fiber evanescent wave (FEW) QEPAS, the HWGMP-QEPAS sensor has advantages such as strong anti-interference ability, low loss, and low cost. Acetylene (C2H2) was selected as the target gas to verify the characteristics of the reported sensor. The experimental results showed that the three QTFs almost had the same sensing ability and possessed an excellent linear concentration response to C2H2. The minimum detection limits (MDLs) for the three QTFs were determined as 68.90, 68.31, and 66.62 ppm, respectively. Allan deviation analysis indicated that the system had good long-term stability, and the MDL can be improved below 3 ppm in an average time of 1000 s.

5.
Sci Rep ; 14(1): 7163, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532046

RESUMEN

As China's coal mines have transitioned to deep mining, the ground stress within the coal seams has progressively increased, resulting in reduced permeability and poor wetting ability of conventional wetting agents. Consequently, these agents have become inadequate in fulfilling the requirements for preventing washouts during deep mining operations. In response to the aforementioned challenges, a solution was proposed to address the issues by formulating a composite wetting agent. This composite wetting agent combines a conventional surfactant with a chelating agent called tetrasodium iminodisuccinate (IDS). By conducting a meticulous screening of surfactant monomer solutions, the ideal formulation for the composite wetting agent was determined by combining the monomer surfactant with IDS. Extensive testing, encompassing evaluations of the composite solution's apparent strain, contact angle measurements, and alterations in the oxygenated functional groups on the coal surface, led to the identification of the optimal composition. This composition consisted of IDS serving as the chelating agent and fatty alcohol polyoxyethylene ether (JFCS).Subsequent assessment of the physical and mechanical performance of the coal briquettes treated with the composite wetting agent revealed notable enhancements. These findings signify significant advancements in the field and hold promising implications. Following the application of the composite wetting agent, notable reductions were observed in the dry basis ash and dry basis full sulfur of coal. Additionally, the water content within the coal mass increased significantly, leading to a substantial enhancement in the wetting effect of the coal body. This enhanced wetting effect effectively mitigated the coal body's inclination towards impact, thereby offering technical support for optimizing water injection into coal seams and preventing as well as treating impact ground pressure.

6.
Opt Lett ; 49(3): 770-773, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300111

RESUMEN

In this Letter, two novel, to the best of our knowledge, quartz tuning forks (QTFs) with trapezoidal-head and round-head were designed and adopted for quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing. Based on finite element analysis, a theoretical simulation model was established to optimize the design of QTF. For performance comparison, a reported T-head QTF and a commercial QTF were also investigated. The designed QTFs have decreased resonant frequency (f0) and increased gap between the two prongs of QTF. The experimentally determined f0 of the T-head QTF, trapezoidal-head QTF, and round-head QTF were 8690.69 Hz, 9471.67 Hz, and 9499.28 Hz, respectively. The corresponding quality (Q) factors were measured as 11,142, 11,411, and 11,874. Compared to the commercial QTF, the resonance frequencies of these QTFs have reduced by 73.45%, 71.07%, and 70.99% while maintaining a comparable Q factor to the commercially mature QTF. Methane (CH4) was chosen as the analyte to verify the QTFs' performance. Compared with the commercial QTF, the signal-to-noise ratio (SNR) of the CH4-QEPAS system based on the T-head QTF, trapezoidal-head QTF, and round-head QTF has been improved by 1.75 times, 2.96 times, and 3.26 times, respectively. The performance of the CH4-QEPAS sensor based on the QTF with the best performance of the round-head QTF was investigated in detail. The results indicated that the CH4-QEPAS sensor based on the round-head QTF exhibited an excellent linear concentration response. Furthermore, a minimum detection limit (MDL) of 0.87 ppm can be achieved when the system's average time was 1200 s.

7.
Photoacoustics ; 36: 100594, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38375332

RESUMEN

In this article, a mid-infrared all-fiber light-induced thermoelastic spectroscopy (LITES) sensor based on a hollow-core anti-resonant fiber (HC-ARF) was reported for the first time. The HC-ARF was applied as a light transmission medium and gas chamber. The constructed all-fiber structure has merits of low loss, easy optical alignment, good system stability, reduced sensor size and cost. The mid-infrared transmission structure can be utilized to target the strongest gas absorption lines. The reversely-tapered SM1950 fiber and the HC-ARF were spatially butt-coupled with a V-shaped groove between the two fibers to facilitate gas entry. Carbon monoxide (CO) with an absorption line at 4291.50 cm-1 (2.33 µm) was chosen as the target gas to verify the sensing performance. The experimental results showed that the all-fiber LITES sensor based on HC-ARF had an excellent linear response to CO concentration. Allan deviation analysis indicated that the system had excellent long-term stability. A minimum detection limit (MDL) of 3.85 ppm can be obtained when the average time was 100 s.

8.
Photoacoustics ; 36: 100592, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38322619

RESUMEN

Methane (CH4) is a greenhouse gas as well as being flammable and explosive. In this manuscript, quartz-enhanced photoacoustic spectroscopy (QEPAS) and heterodyne QEPAS (H-QEPAS) exploring a self-designed quartz tuning fork (QTF) with resonance frequency (f0) of ∼8.7 kHz was utilized to achieve sensitive CH4 detection. Compared with the standard commercial 32.768 kHz QTF, this self-designed QTF with a low f0 and large prong gap has the merits of long energy accumulation time and low optical noise. The strongest line located at 6057.08 cm-1 in the 2v3 overtone band of CH4 was chosen as the target absorption line. A diode laser with a high output power of > 30 mW was utilized as the excitation source. Acoustic micro-resonators (AmRs) were added to the sensor architecture to amplify the intensity of acoustic waves. Compared to the bare QTF, after the addition of AmRs, a signal enhancement of 149-fold and 165-fold were obtained for QEPAS and H-QEPAS systems, respectively. The corresponding minimum detection limits (MDLs) were 711 ppb and 1.06 ppm for QEPAS and H-QEPAS sensors. Furthermore, based on Allan variance analysis the MDLs can be improved to 19 ppb and 27 ppb correspondingly. Compared to the QEPAS sensor, the H-QEPAS sensor shows significantly shorter measurement timeframes, allowing for measuring the gas concentration quickly while simultaneously obtaining f0 of QTF.

9.
Opt Express ; 32(1): 379-386, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175068

RESUMEN

A novel dual-frequency modulated heterodyne quartz-enhanced photoacoustic spectroscopy (DFH-QEPAS) was demonstrated for what we believe to be the first time in this study. In traditional H-QEPAS, the frequency of modulated sinusoidal wave has a frequency difference (Δf) with the resonance frequency (f0) of a quartz tuning fork (QTF). Owing to the resonance characteristic of QTF, it cannot excite QTF to the strongest response. To achieve a stronger response, a sinusoidal wave with a frequency of f0 was added to the modulation wave to compose a dual-frequency modulation. Acetylene (C2H2) was chosen as the target gas to verify the sensor performance. The proposed DFH-QEPAS improved 4.05 times of signal-to-noise ratio (SNR) compared with the traditional H-QEPAS in the same environmental conditions.

10.
Opt Express ; 32(1): 848-856, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175104

RESUMEN

A high-sensitive photoacoustic spectroscopy (PAS) sensor, which is based on a multi-pass-retro-reflection-enhanced differential Helmholtz photoacoustic cell (DHPAC) and a high power diode laser amplified by erbium-doped fiber amplifier (EDFA), is presented in this work for the first time. In order to improve the interaction length between the light and target gas, the incident light was reflected four times through a multi-pass-retro-reflection-cell constructed by two right-angle prisms. A 1.53 µm distributed feedback (DFB) diode laser was selected to excite photoacoustic signal. Moreover, its power was amplified by an EDFA to 1000 mW to improve the amplitude of photoacoustic signal. Acetylene (C2H2) was chosen as the target analysis to verify the reported sensor performance. Compared to double channel without multiple reflections, the 2f signal of double channel with four reflections was improved by 3.71 times. In addition, when the output optical power of EDFA was 1000 mW, the 2f signal has a 70.57-fold improvement compared with the multi-pass-retro-reflection-cell without EDFA. An Allan deviation analysis was carried out to evaluate the long-term stability of such PAS sensor. When the averaging time was 400 s, the minimum detection limit (MDL) of such PAS sensor was 14 ppb.

11.
Anal Chim Acta ; 1288: 342175, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220305

RESUMEN

A novel solid phase extractant His-rSPG@ZIF-8 was prepared by covalently coupling recombinant streptococcal protein G (His-rSPG) with ZIF-8. The His-rSPG@ZIF-8 composite was characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Due to the specific binding between the immunoglobulin binding region of His-rSPG and the Fc region of immunoglobulin G (IgG), the His-rSPG@ZIF-8 composite demonstrated exceptional selectivity in adsorbing IgG. In Britton-Robinson buffer (BR buffer) with a salt concentration of 500 mmol L-1 (0.04 mol L-1, pH 8.0), the His-rSPG@ZIF-8 composite exhibited a remarkable adsorption efficiency of 99.8 % for 0.05 mg of the composite on 200 µL of IgG solution (100 µg mL-1). The adsorption behavior of the His-rSPG@ZIF-8 composite aligns with the Langmuir adsorption model, and the theoretical maximum adsorption capacity is 1428.6 mg g-1. The adsorbed IgG molecules were successfully eluted using a SDS solution (0.5 %, m/m), resulting in a recovery rate of 91.2 %. Indeed, the His-rSPG@ZIF-8 composite was successfully utilized for the isolation and purification of IgG from human serum samples. The obtained IgG exhibited high purity, as confirmed by SDS-PAGE analysis. Additionally, LC-MS/MS analysis was employed to identify the human serum proteins following the adsorption and elution process using the His-rSPG@ZIF-8 composite material. The results revealed that the recovered solution contained an impressive content of immunoglobulin, accounting for 62.4 % of the total protein content. Furthermore, this process also led to the significant enrichment of low abundance proteins such as Serpin B4 and Cofilin-1. Consequently, the His-rSPG@ZIF-8 composite holds great promise for applications such as IgG purification and immunoassays. At the same time, it expands the application of metal-organic frameworks in the field of proteomics.


Asunto(s)
Proteínas Bacterianas , Inmunoglobulina G , Estructuras Metalorgánicas , Humanos , Inmunoglobulina G/química , Estructuras Metalorgánicas/química , Espectroscopía Infrarroja por Transformada de Fourier , Cromatografía Liquida , Espectrometría de Masas en Tándem , Adsorción , Proteínas Recombinantes
12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 8-13, 2024 Jan 10.
Artículo en Chino | MEDLINE | ID: mdl-38171552

RESUMEN

OBJECTIVE: To explore the cause of inconsistency between the results of trisomy 7 by expanded non-invasive prenatal testing (NIPT-PLUS) and trisomy 18 by prenatal diagnosis. METHODS: A pregnant woman who received genetic counseling at Jiaozuo Maternal and Child Health Care Hospital on July 5, 2020 was selected as the study subject. NIPT-PLUS, systematic ultrasound and interventional prenatal testing were carried out. The middle segment and root of umbilical cord, center and edge of the maternal and fatal surface of the placenta were sampled for the validation by copy number variation sequencing (CNV-seq). RESULTS: The result of NIPT-PLUS indicated that the fetus has trisomy 7. Systematic ultrasound has shown multiple malformations including atrioventricular septal defect, horseshoe kidney, and rocker-bottom feet. However, QF-PCR, chromosomal karyotyping analysis, and CNV-seq of amniotic fluid samples all showed that the fetus was trisomy 18. Validation using multiple placental samples confirmed that the middle segment of the umbilical cord contains trisomy 18, the center of the placenta contained trisomy 7, and other placental sites were mosaicism for trisomy 7 and trisomy 18. Notably, the ratio of trisomy 18 became lower further away from the umbilical cord. CONCLUSION: The false positive results of trisomy 7 and false negative trisomy 18 by NIPT-PLUS was probably due to the existence of placental mosaicism. Strict prenatal diagnosis is required needed aneuploidy is detected by NIPT-PLUS to exclude the influence of placental mosaicisms.


Asunto(s)
Trastornos de los Cromosomas , Trisomía , Niño , Embarazo , Femenino , Humanos , Trisomía/diagnóstico , Trisomía/genética , Síndrome de la Trisomía 18/diagnóstico , Síndrome de la Trisomía 18/genética , Placenta , Variaciones en el Número de Copia de ADN , Diagnóstico Prenatal/métodos , Trastornos de los Cromosomas/genética , Aneuploidia
13.
Small ; 20(9): e2305218, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37847903

RESUMEN

Mechanically sensitive tissues (e.g., skeletal muscles) greatly need mechanical stimuli during the development and maturation. The extracellular matrix (ECM) mediates these signals through nonlinear viscoelasticity of collagen networks that are predominant components of the ECM. However, the interactions between cells and ECM form a feedback loop, and it has not yet been possible to determine the degree to which, if any, of the features of matrix nonlinear viscoelasticity affect skeletal muscle development and regeneration. In this study, a nonlinear viscoelastic feature (i.e., strain-enhanced stress relaxation (SESR)) in normal skeletal muscles is observed, which however is almost absent in diseased muscles from Duchenne muscular dystrophy mice. It is recapitulated such SESR feature in vitro and separated the effects of mechanical strain and ECM viscoelasticity on myoblast response by developing a collagen-based hydrogel platform. Both strain and stress relaxation induce myogenic differentiation and myotube formation by C2C12 myoblasts, and myogenesis is more promoted by applying SESR. This promotion can be explained by the effects of SESR on actin polymerization-mediated myocardin related transcription factor (MRTF) nuclear localization and nuclear mechanotransduction. This study represents the first attempt to investigate the SESR phenomenon in skeletal muscles and reveal underlying mechanobiology, which will provide new opportunities for the tissue injury treatments.


Asunto(s)
Mecanotransducción Celular , Proteínas Nucleares , Transactivadores , Factores de Transcripción , Animales , Ratones , Músculo Esquelético , Desarrollo de Músculos , Colágeno
14.
Int J Food Microbiol ; 410: 110465, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37980812

RESUMEN

The primary reason for postharvest loss is blue mold disease which is mainly caused by Penicillium expansum. Strategies for disease control greatly depend on the understanding of mechanisms of pathogen-fruit interaction. A member of the glycoside hydrolase family, ß-glucosidase 1b (eglB), in P. expansum was significantly upregulated during postharvest pear infection. Glycoside hydrolases are a large group of enzymes that can degrade plant cell wall polymers. High homology was found between the glycoside hydrolase superfamily in P. expansum. Functional characterization and analysis of eglB were performed via gene knockout and complementation analysis. Although eglB deletion had no notable effect on P. expansum colony shape or microscopic morphology, it did reduce the production of fungal hyphae, thereby reducing P. expansum's sporulation and patulin (PAT) accumulation. Moreover, the deletion of eglB (ΔeglB) reduced P. expansum pathogenicity in pears. The growth, conidia production, PAT accumulation, and pathogenicity abilities of ΔeglB were restored to that of wild-type P. expansum by complementation of eglB (ΔeglB-C). These findings indicate that eglB contributes to P. expansum's development and pathogenicity. This research is a contribution to the identification of key effectors of fungal pathogenicity for use as targets in fruit safety strategies.


Asunto(s)
Malus , Patulina , Penicillium , Pyrus , Pyrus/microbiología , Glicósido Hidrolasas , Frutas/microbiología , Penicillium/metabolismo , Patulina/metabolismo , Malus/microbiología
15.
Talanta ; 269: 125380, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995639

RESUMEN

In this study, we designed and prepared a trastuzumab-coupled drug delivery system with pH response characteristics using mesoporous zeolitic imidazolate framework-8 (ZIF-8) as the carrier, Trastuzumab@ZIF-8@DOX. As results, the targeted drug delivery system (TDDS) ultimately showed high drug loading and good biocompatibility. The cumulative curve of drug release indicated that the early leakage levels were low under neutral pH conditions. However, under acidic pH conditions, there was an effective enhancement in drug release, indicating the presence of an explicit pH-triggered drug release mechanism. The results indicate that the prepared nanoparticles have the potential to serve as drug delivery systems, as they can release the loaded drug in a controlled manner. The results of cellular uptake tests showed that the uptake of the nanoparticles was greatly enhanced by the internalization mediated by the HER2 antibody. This finding indicates that the prepared nanoparticles can selectively target cancer cells that overexpress HER2. When the doxorubicin dose was 5 µg/ml, the survival rate of SK-BR-3 cells (cancer cells) was 47.75 %, and the survival rate of HaCaT cells (healthy cells) was 75.25 % when co-cultured with both cells. The therapeutic efficacy of Trastuzumab@ZIF-8@DOX was assessed on BALB/c nude mice to validate its potential as an effective drug delivery system for tumor inhibition in vivo. In conclusion, these findings demonstrate the specificity-targeted and pH-responsive nature of this smart drug delivery system, highlighting its promising prospects for efficient and controllable cancer treatment applications.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Animales , Ratones , Ratones Desnudos , Sistemas de Liberación de Medicamentos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Trastuzumab/farmacología , Portadores de Fármacos , Concentración de Iones de Hidrógeno
16.
Nat Commun ; 14(1): 8307, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097553

RESUMEN

The endothelial cell (EC) outgrowth in both vasculogenesis and angiogenesis starts with remodeling surrounding matrix and proceeds with the crosstalk between cells for the multicellular vasculature formation. The mechanical plasticity of matrix, defined as the ability to permanently deform by external traction, is pivotal in modulating cell behaviors. Nevertheless, the implications of matrix plasticity on cell-to-cell interactions during EC outgrowth, along with the molecular pathways involved, remain elusive. Here we develop a collagen-hyaluronic acid based hydrogel platform with tunable plasticity by using compositing strategy of dynamic and covalent networks. We show that although the increasing plasticity of the hydrogel facilitates the matrix remodeling by ECs, the largest tubular lumens and the longest invading distance unexpectedly appear in hydrogels with medium plasticity instead of the highest ones. We unravel that the high plasticity of the hydrogels promotes stable integrin cluster of ECs and recruitment of focal adhesion kinase with an overenhanced contractility which downregulates the vascular endothelial cadherin expression and destabilizes the adherens junctions between individual ECs. Our results, further validated with mathematical simulations and in vivo angiogenic tests, demonstrate that a balance of matrix plasticity facilitates both cell-matrix binding and cell-to-cell adherens, for promoting vascular assembly and invasion.


Asunto(s)
Angiogénesis , Hidrogeles , Hidrogeles/química , Colágeno/metabolismo , Células Endoteliales/metabolismo , Diferenciación Celular , Neovascularización Fisiológica/fisiología
17.
Opt Lett ; 48(21): 5687-5690, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910734

RESUMEN

A new temperature measurement method based on light-induced thermoelastic spectroscopy (LITES) was demonstrated for the first time, to the best of our knowledge, in this manuscript. According to the thermoelastic effect of quartz tuning fork (QTF), this technique retrieves the temperature on the basis of the resonance signal of QTF. Wavelength modulation spectroscopy (WMS) combined with the dual-line method was used to achieve temperature measurement. A QTF with high-frequency selectivity and high-quality factor (Δf0 = 2.5 Hz, Q-factor = 13104.9) was used as the detection element to suppress noise and improve the signal level. Two absorption lines of water vapor (H2O) located at 7153.749 cm-1 and 7154.354 cm-1 were selected as the target line. A single distributed feedback (DFB) diode laser was used to cover the two selected absorption lines simultaneously to reduce the complexity of the sensor system. A tube furnace capable of covering a temperature range from 400°C to 1000°C was adopted to verify the performance of this method. The relative error of the measured temperature was less than 5%, which indicated that the LITES temperature sensor has excellent detection accuracy. Compared to the widely used TDLAS temperature measuring method, this LITES-based technique has the merits of low cost, has no wavelength limitation, and is expected to be applied on more occasions.

18.
Opt Lett ; 48(19): 5089-5092, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37773392

RESUMEN

In this Letter, a differential integrating sphere-based photoacoustic spectroscopy (PAS) gas sensor is proposed for the first time to our knowledge. The differential integrating sphere system consists of two integrating spheres and a tube. Based on differential characteristics, the photoacoustic signal of the designed differential integrating sphere was doubly enhanced and the noise was suppressed. Compared with a single channel integrating sphere, the differential integrating sphere sensing system had a 1.86 times improvement in signal level. An erbium-doped fiber amplifier (EDFA) was adopted to amplify the output of diode laser to enhance the optical excitation. The second harmonic (2f) signal of differential integrating sphere-based acetylene (C2H2) PAS sensor with an amplified 1000 mW optical output power was 104.67 mV, which was 22.80 times improved compared to the sensing system without EDFA. When the integration time was 100 s, the minimum detection limit (MDL) of the differential integrating sphere-based C2H2 PAS sensor was 416.7 ppb. The differential integrating sphere provides a new method, to the best of our knowledge, for the development of PAS sensor, which has the advantages of photoacoustic signal enhancement, strong noise immunity, and no need for optical adjustment.

20.
Molecules ; 28(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37764446

RESUMEN

Non-small-cell lung cancer (NSCLC) is the main cause of cancer-related deaths worldwide, with a low five-year survival rate, posing a serious threat to human health. In recent years, the delivery of antitumor drugs using a nanostructured lipid carrier (NLC) has become a subject of research. This study aimed to develop an apigenin (AP)-loaded nanostructured lipid carrier (AP-NLC) by melt sonication using glyceryl monostearate (GMS), glyceryl triacetate, and poloxamer 188. The optimal prescription of AP-NLC was screened by central composite design response surface methodology (CCD-RSM) based on a single-factor experiment using encapsulation efficiency (EE%) and drug loading (DL%) as response values and then evaluated for its antitumor effects on NCI-H1299 cells. A series of characterization analyses of AP-NLC prepared according to the optimal prescription were carried out using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Subsequent screening of the lyophilization protectants revealed that mannitol could better maintain the lyophilization effect. The in vitro hemolysis assay of this formulation indicated that it may be safe for intravenous injection. Moreover, AP-NLC presented a greater ability to inhibit the proliferation, migration, and invasion of NCI-H1299 cells compared to AP. Our results suggest that AP-NLC is a safe and effective nano-delivery vehicle that may have beneficial potential in the treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Apigenina/farmacología , Proyectos de Investigación , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias Pulmonares/tratamiento farmacológico , Excipientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA