Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(11): 759, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993428

RESUMEN

Cancer-associated fibroblasts (CAFs) are abundant and heterogeneous in tumor microenvironment (TME). Cross-talk between cancer cells and CAFs results in cancer progression. Here, we demonstrated that a distinct cancer-associated fibroblasts subset with podoplanin (PDPN) positive expression (PDPN+ CAFs) was correlated with poor survival in oral squamous cell carcinoma (OSCC). PDPN+ CAFs promoted the progression of OSCC by transferring exosomal lncRNA FTX to OSCC cells. Mechanically, FTX bound to flap endonuclease-1 (FEN1), forming an RNA‒protein complex. FTX enhanced promoter demethylation of FEN1 by recruiting ten-eleven translocation-2 (TET2). In addition, FTX/FEN1 axis promoted OSCC cells motility by inhibiting ferroptosis. In xenograft experiments, RSL-3, a ferroptosis-inducing agent, suppressed the tumorigenesis potential of FEN1-overexpressed OSCC cells. Furthermore, Acyl-CoA synthetase long-chain family member 4 (ACSL4) was confirmed to participate in the motility promotion induced by FEN1 overexpression. FEN1 could bind to promoter region of ACSL4 and then inhibit ferroptosis in OSCC cells. Our study reveals that PDPN+ CAFs promote the invasiveness of OSCC cells by inhibiting ferroptosis through FTX/FEN1/ACSL4 signaling cascade. PDPN+ CAFs may serve as a novel potential therapeutic target for OSCC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Células Escamosas , Ferroptosis , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , ARN Largo no Codificante , Humanos , Carcinoma de Células Escamosas/patología , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Boca/patología , Ferroptosis/genética , Fibroblastos/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Microambiente Tumoral , Glicoproteínas de Membrana/metabolismo
2.
Eur J Oral Sci ; 131(5-6): e12956, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849216

RESUMEN

Pulpotomy is an effective treatment for retaining vital pulp after pulp exposure caused by caries removal and/or trauma. The expression of alpha smooth muscle actin (α-SMA) is increased during the wound-healing process, and α-SMA-positive fibroblasts accelerate tissue repair. However, it remains largely unknown whether α-SMA-positive fibroblasts influence pulpal repair. In this study, we established an experimental rat pulpotomy model and found that the expression of α-SMA was increased in dental pulp after pulpotomy relative to that in normal dental pulp. In vitro results showed that the expression of α-SMA was increased during the induction of odontogenic differentiation in dental pulp stem cells (DPSCs) compared with untreated DPSCs. Moreover, α-SMA overexpression promoted the odontogenic differentiation of DPSCs via increasing mitochondrial function. Mechanistically, α-SMA overexpression activated the mammalian target of rapamycin (mTOR) signaling pathway. Inhibition of the mTOR signaling pathway by rapamycin decreased the mitochondrial function in α-SMA-overexpressing DPSCs and suppressed the odontogenic differentiation of DPSCs. Furthermore, we found that α-SMA overexpression increased the secretion of transforming growth factor beta-1 (TGF-ß1). In sum, our present study demonstrates a novel mechanism by which α-SMA promotes odontogenic differentiation of DPSCs by increasing mitochondrial respiratory activity via the mTOR signaling pathway.


Asunto(s)
Actinas , Pulpa Dental , Odontogénesis , Animales , Ratas , Actinas/metabolismo , Actinas/farmacología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Pulpa Dental/citología , Pulpa Dental/crecimiento & desarrollo , Células Madre , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Pulpotomía
3.
J Oral Pathol Med ; 52(8): 727-737, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37433101

RESUMEN

BACKGROUND: Long non-coding RNA BRAF-activated non-protein coding RNA plays bidirectional roles in human cancers. However, function and molecular mechanism of BRAF-activated non-protein coding RNA in oral squamous cell carcinoma still need to clarify further. METHODS: Long non-coding RNA microarray assay, in situ hybridization staining, clinicopathological data analysis were performed to investigate expression pattern of BRAF-activated non-protein coding RNA in oral squamous cell carcinoma tissue samples. Constructing ectopically expressed BRAF-activated non-protein coding RNA in oral squamous cell carcinoma cells via plasmids or siRNAs, then changeable abilities of proliferation and motility of these cells were observed in vitro and in vivo. RNA-protein pulldown, RNA immunoprecipitation, and bioinformatics analyses were performed to explore potential pathways involved in BRAF-activated non-protein coding RNA-based regulation of malignant progression in oral squamous cell carcinoma. RESULTS: BRAF-activated non-protein coding RNA was identified upregulated in oral squamous cell carcinoma tissue and correlated with nodal metastasis and clinical severity of patients. Overexpressed BRAF-activated non-protein coding RNA increased percentage of 5-ethynyl-2'-deoxyuridine-positive cells, viability, migration, and invasion rates of oral squamous cell carcinoma cells, while silenced BRAF-activated non-protein coding RNA could observe weakened effects in vitro. Xenograft tumor formed by BRAF-activated non-protein coding RNA-overexpressed cells had bigger volume, faster growth rates, higher weight, and more Ki67+ cells. Pulmonary metastasis induced by BRAF-activated non-protein coding RNA-silenced cells had fewer colony nodes, Ki67+ cells, and CD31+ blood vessels. Furthermore, BRAF-activated non-protein coding RNA was mainly localized in nucleus of oral squamous cell carcinoma cells and bound Ras-associated binding 1A. Silencing Ras-associated binding 1A could damage mobile ability and phosphorylation levels of nuclear factor-κB in oral squamous cell carcinoma cells induced by overexpressing BRAF-activated non-protein coding RNA. Opposite trend was also observed. CONCLUSION: Acting as a promoter in oral squamous cell carcinoma metastasis, BRAF-activated non-protein coding RNA promotes oral squamous cell carcinoma cells proliferation and motility by regulating the BRAF-activated non-protein coding RNA/Ras-associated binding 1A complex, which activates nuclear factor-κB signaling pathway.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , ARN Largo no Codificante , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , FN-kappa B/metabolismo , Antígeno Ki-67/metabolismo , Neoplasias de la Boca/genética , Transducción de Señal/genética , Neoplasias de Cabeza y Cuello/genética , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA