Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2402378, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940415

RESUMEN

Multiplexing technology creates several orthogonal data channels and dimensions for high-density information encoding and is irreplaceable in large-capacity information storage, and communication, etc. The multiplexing dimensions are constructed by light attributes and spatial dimensions. However, limited by the degree of freedom of interaction between light and material structure parameters, the multiplexing dimension exploitation method is still confused. Herein, a 7D Spin-multiplexing technique is proposed. Spin structures with four independent attributes (color center type, spin axis, spatial distribution, and dipole direction) are constructed as coding basic units. Based on the four independent spin physical effects, the corresponding photoluminescence wavelength, magnetic field, microwave, and polarization are created into four orthogonal multiplexing dimensions. Combined with the 3D of space, a 7D multiplexing method is established, which possesses the highest dimension number compared with 6 dimensions in the previous study. The basic spin unit is prepared by a self-developed laser-induced manufacturing process. The free state information of spin is read out by four physical quantities. Based on the multiple dimensions, the information is highly dynamically multiplexed to enhance information storage efficiency. Moreover, the high-dynamic in situ image encryption/marking is demonstrated. It implies a new paradigm for ultra-high-capacity storage and real-time encryption.

2.
Opt Express ; 32(10): 17336-17344, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858919

RESUMEN

The ensemble of nitrogen-vacancy (NV) centers is widely used in quantum information transmission, high-precision magnetic field, and temperature sensing due to their advantages of long-lived state and the ability to be pumped by optical cycling. In this study, we investigate the zero-phonon line behavior of the two charge states of NV centers by measuring the photoluminescence of the NV center at 1.6 K-300 K. The results demonstrate a positional redshift, an increase in line width, and a decrease in fluorescence intensity for the ZPL of NV0 and NV- as the temperature increased. In the range of 10 K to 140 K, the peak shift with high concentrations of NV- revealed an anomaly of bandgap reforming. The peak position undergoes a blueshift and then a redshift as temperature increases. Furthermore, the transformation between NV0 and NV- with temperature changes has been obtained in diamonds with different nitrogen concentrations. This study explored the ZPL characteristics of NV centers in various temperatures, and the findings are significant for the development of high-resolution temperature sensing and high-precision magnetic field sensing in ensemble NV centers.

3.
Opt Express ; 32(7): 10829-10840, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570946

RESUMEN

Imaging of electronic device surface or sub-surface electromagnetic fields under operating conditions is important for device design and diagnosis. In this study, we proposed a method to characterize specific magnetic field properties of electromagnetic devices at micron-scale using a solid-state quantum sensor, namely diamond nitrogen-vacancy (NV) centers. By employing a wide-field magnetic field measurement technique based on NV centers, we rapidly obtain the first-order magnetic field distribution of anomalous regions. Furthermore, we approximate the second-order magnetic field (magnetic gradient tensor) using the differential gradient method. To visualize the electromagnetic anomalous regions boundary, we utilize the tensor invariants of the magnetic gradient tensor components, along with their nonlinear combinations. The identification error rate of the anomalous regions is within 12.5%. Additionally, the electromagnetic field of anomalous regions is simulated showing the measurement accuracy. Our study shows that the experimental results are very similar to the theoretical simulation of the electromagnetic field (error: 7%). This work is essential for advancing electromagnetic field characterization of electronic devices and the advancement of quantum magnetic sensor applications.

4.
Sensors (Basel) ; 24(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38676230

RESUMEN

This article introduces a spatial angle measuring device based on ensemble diamond nitrogen-vacancy (NV) center optical detection magnetic resonance (ODMR). This device realizes solid-state all-optical wide-field vector magnetic field measurements for solving the angles of magnetic components in space. The system uses diamond NV center magnetic microscope imaging to obtain magnetic vector distribution and calculates the spatial angles of magnetic components based on the magnetic vector distribution. Utilizing magnetism for angle measuring enables non-contact measuring, reduces the impact on the object being measured, and ensures measurement precision and accuracy. Finally, the accuracy of the system is verified by comparing the measurement results with the set values of the angle displacement platform. The results show that the measurement error of the yaw angle of the system is 1°, and the pitch angle and roll angle are 1.5°. The experimental results are in good agreement with the expected results.

5.
Opt Express ; 32(4): 4756-4768, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439220

RESUMEN

Tensor imaging can provide more comprehensive information about spatial physical properties, but it is a high-dimensional physical quantity that is difficult to observe directly. This paper proposes a fast-transform magnetic tensor imaging method based on the NV magnetic detection technique. The Euler deconvolution interprets the magnetic tensor data to obtain the target three-dimensional (3D) boundary information. Fast magnetic vector imaging was performed using optical detection of magnetic resonance (ODMR) to verify the method's feasibility. The complete tensor data was obtained based on the transformation of the vector magnetic imaging data, which was subsequently solved, and the contour information of the objective was restored. In addition, a fast magnetic moment judgment model and an angular transformation model of the observation space are developed in this paper to reduce the influence of the magnetic moment direction on the results and to help interpret the magnetic tensor data. Finally, the experiment realizes the localization, judgment of magnetic moment direction, and 3D boundary identification of a micron-sized tiny magnet with a spatial resolution of 10 µm, a model accuracy of 90.1%, and a magnetic moment direction error of 4.2°.

6.
Opt Express ; 32(4): 4931-4943, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439232

RESUMEN

Wide-range high-precision velocity detection with nitrogen-vacancy (NV) color center has been realized. By treating the NV color center as a mixer, the high-precision microwave measurement is realized. Through optimization of acquisition time, the microwave frequency resolution is improved to the mHz level. Combined with the frequency-velocity conversion model, velocity detection is realized in the range of 0-100 cm/s, and the velocity resolution is up to 0.012 cm/s. The maximum deviation in repeated measurements does not exceed 1/1000. Finally, combined with the multiplexed microwave reference technique, the range of velocity can be extended to 7.4 × 105 m/s. All of the results provide reference for high-precision velocity detection and play a significant role in various domains of quantum precision measurement. This study provides a crucial technical foundation for the development of high-dynamic-range velocity detectors and novel quantum precision velocity measurement technologies.

7.
Behav Brain Res ; 465: 114968, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38521360

RESUMEN

PURPOSE: Depression is a psychiatric disorder and the treatment of depression is an urgent problem that need to be solved. Gastrodin (GAS) is a Traditional Chinese Medicine from an orchid and is used for neurological diseases, including depressive disorders. METHODS: To assess the effect of GAS on gut microbiota of depressive mice, we established a chronic unpredictable mild stress (CUMS)-induced mouse model, and GAS was administered to one group of the mice. Animal behavior experiments were used to detect depressive-like behaviors, and 16 S rRNA gene analysis was applied to detect the gut microbiota of each group. All raw sequences were deposited in the NCBI Sequence Read Archive under accession number SRP491061. RESULTS: GAS treatment significantly improved depressive-like behaviors as well as the diversity and abundance of the gut microbiota. The depressive-like behaviors of the CUMS-GAS group were improved in different degrees compared with the CUMS group. The linear discriminant analysis (LDA) of the gut microbiota showed that the makeup of the gut microbiota in mice changed dramatically in the CUMS-GAS group, compared with the CUMS group, Bacteroides (LDA = 3.94, P < 0.05) were enriched in the CUMS-GAS group at the genus level. In comparison to the CUMS group, the CUMS-GAS group had a greater concentration numbers of Lactobacillus, Corynebacterium, Staphylococcus, Bacteroides, Psychrobacter, and Alistipes. CONCLUSION: Our results suggested that GAS improved depressive-like behaviors in mice and impacted the microbial composition of the gut. Our research indicated that dysbiosis of the gut microbiota may be affected by GAS treatment, which improved depressive-like behaviors in the CUMS-induced mouse model of depression.


Asunto(s)
Alcoholes Bencílicos , Depresión , Microbioma Gastrointestinal , Glucósidos , Humanos , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/psicología , Conducta Animal , Estrés Psicológico/complicaciones
8.
Opt Express ; 32(3): 3184-3193, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297545

RESUMEN

In this paper, we propose a method for simultaneously recovering multiple radio wave signals based on nitrogen-vacancy (NV) centers in diamond combining optically detected magnetic resonance (ODMR) spectrum. A controlled magnetic field gradient applied to the laser excitation area on the surface of diamond widens the detectable ODMR bandwidth to 200 MHz. Three different frequency-modulated (FM) signals with distinct carrier frequencies falling within the resonance frequency range are received and demodulated in real-time. Subsequently, the FM signal reception capability of this system is further investigated by measuring baseband signal frequencies ranging from 0.1 Hz to 200 Hz and adjusting the carrier power within a dynamic range from -10 dBm to 30 dBm. This proposal, which accomplishes multi-channel demodulation using a compact and single device, has potential applications in fields such as wireless communication, radar and navigation.

9.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862530

RESUMEN

The nitrogen vacancy (NV) color center in diamonds is an electron spin that can measure magnetic fields with high sensitivity and resolution. Furthermore, the robustness of an NV-based quantum system should be improved for further application in other sensing methods and in the exploration of basic physics. In this work, the robustness of an NV magnetometer is improved by the double driving method. The sensitivity of the NV magnetometer was improved 2.1 times by strengthening the pumping power from 100 to 600 mW. In this process, thermal drift was introduced, which affects the measurement accuracy. The temperature drift of a diamond matrix was measured using an infrared camera, and the temperature change of a diamond host drifted to ∼80 K under high laser and microwave power. To address the drift of temperature owing to sensitivity improvement by pumping enhancement, the double driving method was introduced, to suppress the drift of the resonance frequency, to improve the robustness of a continuous-wave NV magnetometer. The magnetic noise density was improved from 10 to 1.2 nT/Hz1/2. This study checked the source of temperature noise in the process of measuring with the NV color centers and proposes a double driving measurement method to track the resonant frequency change due to environmental temperature drift and improve sensitivity. The findings of this study are useful in applying complex pulse protocols in high-level sensing applications based on solid-state spin.

10.
Micromachines (Basel) ; 14(10)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37893260

RESUMEN

Nitrogen-vacancy (NV) centers in diamonds are promising solid-state magnetic sensors with potential applications in power systems, geomagnetic navigation, and diamond NV color center current transformers, in which both high bandwidth and high magnetic field resolution are required. The wide bandwidth requirement often necessitates high laser power, but this induces significant laser fluctuation noise that affects the detection magnetic field resolution severely. Therefore, enhancement of the magnetic field resolution of wide-bandwidth NV center magnetic sensors is highly important because of the reciprocal effects of the bandwidth and magnetic field resolution. In this article, we develop a common mode rejection (CMR) model to eliminate the laser noise effectively. The simulation results show that the noise level of the light-detected magnetic resonance signal is significantly reduced by a factor of 6.2 after applying the CMR technique. After optimization of the laser power and modulation frequency parameters, the optimal system bandwidth was found to be 75 Hz. Simultaneously, the system's detection magnetic field resolution was enhanced significantly, increasing from 4.49 nT/Hz1/2 to 790.8 pT/Hz1/2, which represents an improvement of nearly 5.7 times. This wide-bandwidth, high-magnetic field resolution NV color center magnetic sensor will have applications including power systems, geomagnetic navigation, and diamond NV color center current transformers.

11.
Appl Opt ; 62(15): 3967-3975, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37706707

RESUMEN

In this paper, we implement integrated magnetic flux concentrators (MFCs) combined with a multi-frequency modulation method to achieve high-magnetic-detection sensitivity using a nuclear spin on the solid nuclear spin in diamonds. First, we excited the nuclear spin in diamonds using a continuous-wave technique, and a linewidth of 1.37 MHz and frequency resolution of 79 Hz were successfully obtained, which is reduced by one order of the linewidth, and increased by 56 times in frequency resolution compared to that excited by an electron spin. The integrated high-permeability MFC was designed to magnify the magnetic field near the diamond, with a magnification of 9.63 times. Then, the multi-frequency modulation technique was used to fully excite the hyperfine energy level of Nitrogen Vacancy (NV) centers along the four axes on the diamond with MFC, and magnetic detection sensitivity of 250p T/H z 1/2 was realized. These techniques should allow designing an integrated NV magnetometer with high sensitivity in a small volume.

12.
Appl Opt ; 62(16): 4275-4280, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706917

RESUMEN

We propose a method for microwave target source localization based on the diamond nitrogen vacancy color center. We use coherent population oscillation effect and modulation and demodulation techniques to achieve the detection of microwave intensity of microwave target sources, with a minimum detection intensity of 0.59 µW. Positioning of the microwave source was achieved within 50×100c m 2 distance from the system 1 m away using the cubic spline interpolation algorithm and minimum mean squared error. The maximum positioning error was 3.5 cm. This method provides a new, to the best of our knowledge, idea for the passive localization of microwave targets.

13.
Langmuir ; 39(36): 12740-12753, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37651224

RESUMEN

Paraffin and octadecyltrichlorosilane (OTS) coatings can alleviate collisions between alkali-metal atoms and cell walls and then prolong the atomic spin-polarization lifetime. The surface structure and collision effects of these antirelaxation coatings, as well as the methods to avoid antirelaxation invalidity, have been the focus of researchers. This study investigated the thermolability of coating surface structure and the collision interactions between alkali metal atoms and coatings, considering the influence of various coating preparation factors, where this collision interaction is indirectly analyzed by measuring the collision energy dissipation between an atomic force microscopy (AFM) probe and the atoms on the coating surface. We found that appropriate evaporation time, carbochain length, and postannealing process can enhance the thermostability of the paraffin coating and eliminate its morphological defects. Furthermore, the OTS/water concentration, the soaking time, and the type of solvent have different levels of influence on the cluster formation and the thermostability of the OTS coatings. Moreover, the antirelaxation performance of coatings has been shown to be characterized by counting the energy dissipated when the AFM probe collides with the antirelaxation coating, replacing the conventional light-atom interaction- based method for measuring the relaxation characteristics, but requiring specific coating preparation factors to be maintained.

14.
Materials (Basel) ; 16(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37241345

RESUMEN

In this work, we designed, simulated, and tested a complementary split ring resonator (CSRR) for the purpose of applying a strong and uniform microwave field for the manipulation of nitrogen vacancy (NV) ensembles. This structure was fabricated by etching two concentric rings on a flat metal film that was deposited on a printed circuit board. A metal transmission on the back plane was used as the feed line. The fluorescence collection efficiency was improved by about 2.5 times with the CSRR structure compared to that without CSRR. Furthermore, the maximum Rabi frequency could reach 11.3 MHz, and the Rabi frequency variation was smaller than 2.8% in an area of 250 × 75 µm. This could pave the way to achieving high-efficiency control of the quantum state for spin-based sensor applications.

15.
Micromachines (Basel) ; 14(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37241561

RESUMEN

This paper builds a corresponding micro-displacement test system based on an ensemble nitrogen-vacancy (NV) color center magnetometer by combining the correlation between a magnetic flux concentrator, a permanent magnet, and micro-displacement. By comparing the measurement results obtained with and without the magnetic flux concentrator, it can be seen that the resolution of the system under the magnetic flux concentrator can reach 25 nm, which is 24 times higher than without the magnetic flux concentrator. The effectiveness of the method is proven. The above results provide a practical reference for high-precision micro-displacement detection based on the diamond ensemble.

16.
Appl Intell (Dordr) ; 53(2): 2295-2320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35572050

RESUMEN

Knowledge graph embedding (KGE) is effectively exploited in providing precise and accurate recommendations from many perspectives in different application scenarios. However, such methods that utilize entire embedded Knowledge Graph (KG) without applying information-relevance regulatory constraints fail to stop the noise penetration into the underlying information. Moreover, higher computational time complexity is a CPU overhead in KG-enhanced systems and applications. The occurrence of these limitations significantly degrade the recommendation performance. Therefore, to cope with these challenges we proposed novel KGEE (Knowledge Graph Embedding Enhancement) approach of Hashing-based Semantic-relevance Attributed Graph-embedding Enhancement (H-SAGE) to model semantically-relevant higher-order entities and relations into the unique Meta-paths. For this purpose, we introduced Node Relevance-based Guided-walk (NRG) modeling technique. Further, to deal with the computational time-complexity, we converted the relevant information to the Hash-codes and proposed Deep-Probabilistic (dProb) technique to place hash-codes in the relevant hash-buckets. Again, we used dProb to generate guided function-calls to maximize the possibility of Hash-Hits in the hash-buckets. In case of Hash-Miss, we applied Locality Sensitive (LS) hashing to retrieve the required information. We performed experiments on three benchmark datasets and compared the empirical as well as the computational performance of H-SAGE with the baseline approaches. The achieved results and comparisons demonstrate that the proposed approach has outperformed the-state-of-the-art methods in the mentioned facets of evaluation.

17.
Micromachines (Basel) ; 15(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38258178

RESUMEN

Optically pumped gradiometers have long been utilized in measurement in the International Geomagnetic Reference Field (IGRF). With advancements in technologies such as laser diodes and microfabrication, integrated gradiometers with compact sizes have become available, enabling improvements in magnetoencephalography and fetal magnetocardiography within shielded spaces. Moreover, there is a growing interest in the potential of achieving biomagnetic source detection without shielding. This review focuses on recent developments in optically pumped magnetic field gradiometers, including various fabrication methods and measurement schemes. The strengths and weaknesses of different types of optically pumped gradiometers are also analyzed.

18.
Appl Opt ; 61(25): 7515-7520, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256057

RESUMEN

Accurate detection technology of the microwave electric field is an important foundation to explore new materials, devices, and electromagnetic effects. In this paper, the design of a microwave electric field detection enhanced by a resonant cavity was proposed and experimentally verified. The simulation results show that the enhancement factor is 3.45 at the position of 3 mm from the square SRR). By combining the experimental system, the actual enhancement factor is 3.31(6), and the corresponding electric field detection sensitivity is increased from 1.02 V/m to 0.30 V/m. The proposed scheme provides certain technical support for the weak microwave electric field detection and the development of the integrated atomic microwave detection unit.

19.
Opt Express ; 30(22): 39877-39890, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298930

RESUMEN

The wide-field (2.42 mm × 1.36 mm, resolution: 5.04 µm) tomography imaging of double circuits is performed using nitrogen-vacancy (NV) center ensembles in a diamond. The magnetic-field distribution on the surface of the circuit produced by the lower layer is obtained. Vector magnetic superposition is used to separate the magnetic-field distribution produced by the lower layer from the magnetic-field distribution produced by two layers. An inversion model is used to perform the tomography imaging of the magnetic-field distribution on the lower layer surface. Compared with the measurements of the upper layer, the difference in the maximum magnetic-field intensity of inversion is approximately 0.4%, and the difference in the magnetic-field distribution of inversion is approximately 8%, where the depth of the lower layer is 0.32 mm. Simulations are conducted to prove the reliability of the imaging. These results provide a simple and highly accurate reference for the detection and fault diagnosis of multilayer and integrated circuits.

20.
Nanotechnology ; 32(5): 055502, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33065555

RESUMEN

In this work, we propose a 10 µm-scale spin-based sensor structure, which mainly consists of a nanowire (NW) ring resonator laser, nitrogen-vacancy (NV) defects in a nanodiamond (ND) and a microwave (MW) antenna. The NW laser was bent into a ring with a gap to pump the NV defects in the ND which was assembled in the gap with the diameter of ∼8 µm. And the fluorescent light of NV defects was enhanced by the NW ring resonator about 8 times. Furthermore, the NW laser pulse was produced by the optical switch and a simple plus-sequences was designed to get the Rabi oscillation signal. Based on the Rabi oscillation, a Ramsey-type sequence was used to detect the magnetic field with the sensitivity of 83 nT √Hz-1 for our 10 µm-scale spin-based sensor structure. It proves the spin state in our structure allows for coherent spin manipulation for more complex quantum control schemes. And our structure fulfills the fundamental requirements to develop chip-scale spin-based sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...