Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hepatol Commun ; 8(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38896080

RESUMEN

BACKGROUND: Neutrophils are key mediators of inflammation during acute liver injury (ALI). Emerging evidence suggests that they also contribute to injury resolution and tissue repair. However, the different neutrophil subsets involved in these processes and their kinetics are undefined. Herein, we characterized neutrophil kinetics and heterogeneity during ALI. METHODS: We used the carbon tetrachloride model of ALI and employed flow cytometry, tissue imaging, and quantitative RT-PCR to characterize intrahepatic neutrophils during the necroinflammatory early and late repair phases of the wound healing response to ALI. We FACS sorted intrahepatic neutrophils at key time points and examined their transcriptional profiles using RNA-sequencing. Finally, we evaluated neutrophil protein translation, mitochondrial function and metabolism, reactive oxygen species content, and neutrophil extracellular traps generation. RESULTS: We detected 2 temporarily distinct waves of neutrophils during (1) necroinflammation (at 24 hours after injury) and (2) late repair (at 72 hours). Early neutrophils were proinflammatory, characterized by: (1) upregulation of inflammatory cytokines, (2) activation of the noncanonical NF-κB pathway, (3) reduction of protein translation, (4) decreased oxidative phosphorylation, and (5) higher propensity to generate reactive oxygen species and neutrophil extracellular traps. In contrast, late neutrophils were prorepair and enriched in genes and pathways associated with tissue repair and angiogenesis. Finally, early proinflammatory neutrophils were characterized by the expression of a short isoform of C-X-C chemokine receptor 5, while the late prorepair neutrophils were characterized by the expression of C-X-C chemokine receptor 4. CONCLUSIONS: This study underscores the phenotypic and functional heterogeneity of neutrophils and their dual role in inflammation and tissue repair during ALI.


Asunto(s)
Neutrófilos , Animales , Neutrófilos/inmunología , Neutrófilos/metabolismo , Ratones , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Masculino , Especies Reactivas de Oxígeno/metabolismo , Hígado/patología , Hígado/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Citocinas/metabolismo , Trampas Extracelulares/metabolismo
2.
Front Microbiol ; 11: 2041, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042035

RESUMEN

Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). To date, it is the unique published example of a virus able to form a biofilm at the surface of infected cells. Deeply studied in bacteria, bacterial biofilms represent multicellular assemblies of bacteria in contact with a surface and shielded by the extracellular matrix (ECM). Microbial lifestyle in biofilms, either viral or bacterial, is opposed structurally and physiologically to an isolated lifestyle, in which viruses or bacteria freely float in their environment. HTLV-1 biofilm formation is believed to be promoted by viral proteins, mainly Tax, through remodeling of the ECM of the infected cells. HTLV-1 biofilm has been linked to cell-to-cell transmission of the virus. However, in comparison to bacterial biofilms, very little is known on kinetics of viral biofilm formation or dissemination, but also on its pathophysiological roles, such as escape from immune detection or therapeutic strategies, as well as promotion of leukemogenesis. The switch between production of cell-free isolated virions and cell-associated viral biofilm, although not fully apprehended yet, remains a key step to understand HTLV-1 infection and pathogenesis.

3.
Infect Immun ; 88(5)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32094259

RESUMEN

The intracellular lifestyle of bacteria is widely acknowledged to be an important mechanism in chronic and recurring infection. Among the Staphylococcus genus, only Staphylococcus aureus and Staphylococcus pseudintermedius have been clearly identified as intracellular in nonprofessional phagocytic cells (NPPCs), for which the mechanism is mainly fibronectin-binding dependent. Here, we used bioinformatics tools to search for possible new fibronectin-binding proteins (FnBP-like) in other Staphylococcus species. We found a protein in Staphylococcus delphini called Staphylococcus delphini surface protein Y (SdsY). This protein shares 68% identity with the Staphylococcus pseudintermedius surface protein D (SpsD), 36% identity with S. aureus FnBPA, and 39% identity with S. aureus FnBPB. The SdsY protein possesses the typical structure of FnBP-like proteins, including an N-terminal signal sequence, an A domain, a characteristic repeated pattern, and an LPXTG cell wall anchor motif. The level of adhesion to immobilized fibronectin was significantly higher in all S. delphini strains tested than in the fibronectin-binding-deficient S. aureus DU5883 strain. By using a model of human osteoblast infection, the level of internalization of all strains tested was significantly higher than with the invasive-incompetent S. aureus DU5883. These findings were confirmed by phenotype restoration after transformation of DU5883 by a plasmid expression vector encoding the SdsY repeats. Additionally, using fibronectin-depleted serum and murine osteoblast cell lines deficient for the ß1 integrin, the involvement of fibronectin and ß1 integrin was demonstrated in S. delphini internalization. The present study demonstrates that additional staphylococcal species are able to invade NPPCs and proposes a method to identify FnBP-like proteins.


Asunto(s)
Fagocitos/metabolismo , Fagocitos/microbiología , Staphylococcus/metabolismo , Staphylococcus/patogenicidad , Adhesinas Bacterianas/metabolismo , Animales , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Pared Celular/metabolismo , Fibronectinas/metabolismo , Humanos , Integrina beta1/metabolismo , Ratones
4.
Front Microbiol ; 10: 1602, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379772

RESUMEN

With the aging of population, the number of indications for total joint replacement is continuously increasing. However, prosthesis loosening can happen and is related to two major mechanisms: (1) aseptic loosening due to prosthesis micromotion and/or corrosion and release of wear particles from the different components of the implanted material and (2) septic loosening due to chronic prosthetic joint infection (PJI). The "aseptic" character of prosthesis loosening has been challenged over the years, especially considering that bacteria can persist in biofilms and be overlooked during diagnosis. Histological studies on periprosthetic tissue samples reported that macrophages are the principle cells associated with aseptic loosening due to wear debris. They produce cytokines and favor an inflammatory environment that induces formation and activation of osteoclasts, leading to bone resorption and periprosthetic osteolysis. In PJIs, the presence of infiltrates of polymorphonuclear neutrophils is a major criterion for histological diagnosis. Neutrophils are colocalized with osteoclasts and zones of osteolysis. A similar inflammatory environment also develops, leading to bone resorption through osteoclasts. Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus lugdunensis are the main staphylococci observed in PJIs. They share the common feature to form biofilm. For S. aureus and S. epidermidis, the interaction between biofilm and immunes cells (macrophages and polymorphonuclear neutrophils) differs regarding the species. Indeed, the composition of extracellular matrix of biofilm seems to impact the interaction with immune cells. Recent papers also reported the major role of myeloid-derived suppressor cells in biofilm-associated PJIs with S. aureus. These cells prevent lymphocyte infiltration and facilitate biofilm persistence. Moreover, the role of T lymphocytes is still unclear and potentially underestimates. In this review, after introducing the cellular mechanism of aseptic and septic loosening, we will focus on the interrelationships between staphylococcal biofilm, immune cells, and bone cells.

5.
Artículo en Inglés | MEDLINE | ID: mdl-30003063

RESUMEN

Staphylococcus pseudintermedius is responsible for severe and necrotizing infections in humans and dogs. Contrary to S. aureus, the pathophysiological mechanisms involved in this virulence are incompletely understood. We previously showed the intracellular cytotoxicity induced after internalization of S. pseudintermedius. Herein, we aimed to identify the virulence factors responsible for this cytotoxic activity. After addition of filtered S. pseudintermedius supernatants in culture cell media, MG63 cells, used as representative of non-professional phagocytic cells (NPPc), released a high level of LDH, indicating that the cytotoxicity was mainly mediated by secreted factors. Accordingly, we focused our attention on S. pseudintermedius toxins. In silico analysis found the presence of two PSMs (δ-toxin and PSMε) as well as Luk-I leukotoxin, the presence of which was confirmed by PCR in all clinical strains tested (n = 17). Recombinant Luk-I leukotoxin had no cytotoxic activity on NPPc but the ectopic expression of the CXCR2 receptor in U937 cells conferred cytotoxity to Luk-I. This is in agreement with the lack of Luk-I effect on NPPc and the previous report of Luk-I cytoxic activity on immune cells. Contrary to Luk-I, synthetic δ-toxin and PSMε had a strong cytotoxic activity on NPPc. The secretion of δ-toxin and PSMε at cytotoxic concentrations by S. pseudintermedius in culture supernatant was confirmed by HPLC-MS. In addition, the supplementation of such supernatants with human serum, known to inhibit PSM, induced a complete abolition of cytotoxicity which indicates that PSMs are the key players in the cytotoxic phenotype of NPPc. The results suggest that the severity of S. pseudintermedius infections is, at least in part, explained by a combined action of Luk-I that specifically targets immune cells expressing the CXCR2 receptor, and PSMs that disrupt cell membranes whatever the cell types. The present study strengthens the key role of PSMs in virulence of the different species belonging to Staphylococcus genus.


Asunto(s)
Toxinas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Fagocitos/efectos de los fármacos , Fagocitos/microbiología , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Staphylococcus/patogenicidad , Factores de Virulencia/metabolismo , Línea Celular , Humanos
6.
Front Microbiol ; 7: 1063, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27462303

RESUMEN

Implicated in more than 60% of bone and joint infections (BJIs), Staphylococci have a particular tropism for osteoarticular tissue and lead to difficult-to-treat clinical infections. To date, Staphylococcus aureus internalization in non-professional phagocytic cells (NPPCs) is a well-explored virulence mechanism involved in BJI chronicity. Conversely, the pathophysiological pathways associated with Staphylococcus non-aureus (SNA) BJIs have scarcely been studied despite their high prevalence. In this study, 15 reference strains from 15 different SNA species were compared in terms of (i) adhesion to human fibronectin based on adhesion microplate assays and (ii) internalization ability, intracellular persistence and cytotoxicity based on an in vitro infection model using human osteoblasts. Compared to S. aureus, S. pseudintermedius was the only species that significantly adhered to human fibronectin. This species was also associated with high (even superior to S. aureus) internalization ability, intracellular persistence and cytotoxicity. These findings were confirmed using a panel of 17 different S. pseudintermedius isolates. Additionally, S. pseudintermedius internalization by osteoblasts was completely abolished in ß1 integrin-deficient murine osteoblasts. These results suggest the involvement of ß1 integrin in the invasion process, although this mechanism was previously restricted to S. aureus. In summary, our results suggest that internalization into NPPCs is not a classical pathophysiologic mechanism of SNA BJIs. S. pseudintermedius appears to be an exception, and its ability to invade and subsequently induce cytotoxicity in NPPCs could explain its severe and necrotic forms of infection, notably in dogs, which exhibit a high prevalence of S. pseudintermedius infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...