RESUMEN
G-protein coupled receptors (GPCRs) transduce a wide range of extracellular signals. They are key players in the majority of biologic functions including vision, olfaction, chemotaxis, and immunity. However, as essential as most of them are to body function and homeostasis, overactivation of GPCRs has been implicated in many pathologic diseases such as cancer, asthma, and heart failure (HF). Therefore, an important feature of G protein signaling systems is the ability to control GPCR responsiveness, and one key process to control overstimulation involves initiating receptor desensitization. A number of steps are appreciated in the desensitization process, including cell surface receptor phosphorylation, internalization, and downregulation. Rapid or short-term desensitization occurs within minutes and involves receptor phosphorylation via the action of intracellular protein kinases, the binding of ß-arrestins, and the consequent uncoupling of GPCRs from their cognate heterotrimeric G proteins. On the other hand, long-term desensitization occurs over hours to days and involves receptor downregulation or a decrease in cell surface receptor protein level. Of the proteins involved in this biologic phenomenon, ß-arrestins play a particularly significant role in both short- and long-term desensitization mechanisms. In addition, ß-arrestins are involved in the phenomenon of biased agonism, where the biased ligand preferentially activates one of several downstream signaling pathways, leading to altered cellular responses. In this context, this review discusses the different patterns of desensitization of the α 1-, α 2- and the ß adrenoceptors and highlights the role of ß-arrestins in regulating physiologic responsiveness through desensitization and biased agonism. SIGNIFICANCE STATEMENT: A sophisticated network of proteins orchestrates the molecular regulation of GPCR activity. Adrenoceptors are GPCRs that play vast roles in many physiological processes. Without tightly controlled desensitization of these receptors, homeostatic imbalance may ensue, thus precipitating various diseases. Here, we critically appraise the mechanisms implicated in adrenoceptor desensitization. A better understanding of these mechanisms helps identify new druggable targets within the GPCR desensitization machinery and opens exciting therapeutic fronts in the treatment of several pathologies.
Asunto(s)
Transducción de Señal , Humanos , Animales , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiología , beta-Arrestinas/metabolismoRESUMEN
Sodium chloride (NaCl) activates Th17 and dendritic cells in hypertension by stimulating serum/glucocorticoid kinase 1 (SGK1), a sodium sensor. Memory T cells also play a role in hypertension by infiltrating target organs and releasing proinflammatory cytokines. We tested the hypothesis that the role of T cell SGK1 extends to memory T cells. We employed mice with a T cell deletion of SGK1, SGK1fl/fl × tgCD4cre mice, and used SGK1fl/fl mice as controls. We treated the mice with L-NAME (0.5 mg/mL) for 2 weeks and allowed a 2-week washout interval, followed by a 3-week high-salt (HS) diet (4% NaCl). L-NAME/HS significantly increased blood pressure and memory T cell accumulation in the kidneys and bone marrow of SGK1fl/fl mice compared to knockout mice on L-NAME/HS or groups on a normal diet (ND). SGK1fl/fl mice exhibited increased albuminuria, renal fibrosis, and interferon-γ levels after L-NAME/HS treatment. Myography demonstrated endothelial dysfunction in the mesenteric arterioles of SGK1fl/fl mice. Bone marrow memory T cells were adoptively transferred from either mouse strain after L-NAME/HS administration to recipient CD45.1 mice fed the HS diet for 3 weeks. Only the mice that received cells from SGK1fl/fl donors exhibited increased blood pressure and renal memory T cell infiltration. Our data suggest a new therapeutic target for decreasing hypertension-specific memory T cells and protecting against hypertension.
Asunto(s)
Hipertensión , Proteínas Inmediatas-Precoces , NG-Nitroarginina Metil Éster , Proteínas Serina-Treonina Quinasas , Cloruro de Sodio Dietético , Animales , Masculino , Ratones , Presión Sanguínea/efectos de los fármacos , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/patología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , NG-Nitroarginina Metil Éster/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Cloruro de Sodio Dietético/efectos adversos , Linfocitos T/metabolismo , Linfocitos T/inmunologíaRESUMEN
We have previously shown that effector memory (TEM) cells accumulate in the bone marrow (BM) and the kidney in response to l-NAME/high salt challenge. It is not well understood if measures to block the exodus of that effector memory cells prevent redistribution of these cells and protect from hypertension-induced renal damage. We hypothesized that that effector memory cells that accumulate in the bone marrow respond to repeated salt challenges and can be reactivated and circulate to the kidney. Thus, to determine if mobilization of bone marrow that effector memory cells and secondary lymphoid organs contribute to the hypertensive response to delayed salt challenges, we employed fingolimod (FTY720), an S1PR1 functional antagonist by downregulating S1PR, which inhibits the egress of that effector memory cells used effectively in the treatment of multiple sclerosis and cardiovascular diseases. We exposed wild-type mice to the l-NAME for 2 weeks, followed by a wash-out period, a high salt diet feeding for 4 weeks, a wash-out period, and then a second high salt challenge with or without fingolimod. A striking finding is that that effector memory cell egress was dramatically attenuated from the bone marrow of mice treated with fingolimod with an associated reduction of renal that effector memory cells. Mice receiving fingolimod were protected from hypertension. We found that wild-type mice that received fingolimod during the second high salt challenge had a marked decrease in the renal damage markers. CD3+ T cell infiltration was significantly attenuated in the fingolimod-treated mice. To further examine the redistribution of bone marrow that effector memory cells in response to repeated hypertensive stimuli, we harvested the bone marrow from CD45.2 mice following the repeated high salt protocol with or without fingolimod; that effector memory cells were sorted and adoptively transferred (AT) to CD45.1 naïve recipients. Adoptively transferred that effector memory cells from mice treated with fingolimod failed to home to the bone marrow and traffic to the kidney in response to a high salt diet. We conclude that memory T cell mobilization contributes to the predisposition to hypertension and end-organ damage for prolonged periods following an initial episode of hypertension. Blocking the exodus of reactivated that effector memory cells from the bone marrow protects the kidney from hypertension-induced end-organ damage.
RESUMEN
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
RESUMEN
[This corrects the article DOI: 10.3389/fphys.2021.802132.].
RESUMEN
SARS-CoV-2 infects cells through angiotensin-converting enzyme 2 (ACE2), a ubiquitous receptor that interacts with the virus' surface S glycoprotein. Recent reports show that the virus affects the central nervous system (CNS) with symptoms and complications that include dizziness, altered consciousness, encephalitis, and even stroke. These can immerge as indirect immune effects due to increased cytokine production or via direct viral entry into brain tissue. The latter is possible through neuronal access via the olfactory bulb, hematogenous access through immune cells or directly across the blood-brain barrier (BBB), and through the brain's circumventricular organs characterized by their extensive and highly permeable capillaries. Last, the COVID-19 pandemic increases stress, depression, and anxiety within infected individuals, those in isolation, and high-risk populations like children, the elderly, and health workers. This review surveys the recent updates of CNS manifestations post SARS-CoV-2 infection along with possible mechanisms that lead to them.
Asunto(s)
COVID-19 , Accidente Cerebrovascular , Niño , Humanos , Anciano , COVID-19/complicaciones , SARS-CoV-2 , Pandemias , Barrera HematoencefálicaRESUMEN
According to the World Health Organization (WHO), an estimated 1.28 billion adults aged 30-79 years worldwide have hypertension; and every year, hypertension takes 7.6 million lives. High intakes of salt and sugar (mainly fructose from added sugars) have been linked to the etiology of hypertension, and this may be particularly true for countries undergoing the nutrition transition, such as Lebanon. Salt-induced hypertension and fructose-induced hypertension are manifested in different mechanisms, including Inflammation, aldosterone-mineralocorticoid receptor pathway, aldosterone independent mineralocorticoid receptor pathway, renin-angiotensin system (RAS), sympathetic nervous system (SNS) activity, and genetic mechanisms. This review describes the evolution of hypertension and cardiovascular diseases (CVDs) in Lebanon and aims to elucidate potential mechanisms where salt and fructose work together to induce hypertension. These mechanisms increase salt absorption, decrease salt excretion, induce endogenous fructose production, activate fructose-insulin-salt interaction, and trigger oxidative stress, thus leading to hypertension. The review also provides an up-to-date appraisal of current intake levels of salt and fructose in Lebanon and their main food contributors. It identifies ongoing salt and sugar intake reduction strategies in Lebanon while acknowledging the country's limited scope of regulation and legislation. Finally, the review concludes with proposed public health strategies and suggestions for future research, which can reduce the intake levels of salt and fructose levels and contribute to curbing the CVD epidemic in the country.
RESUMEN
Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.
Asunto(s)
Tejido Adiposo/patología , Aterosclerosis/tratamiento farmacológico , Flavonoides/uso terapéutico , Inflamación/tratamiento farmacológico , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Aterosclerosis/complicaciones , Flavonoides/química , Flavonoides/farmacología , Humanos , Inflamación/complicaciones , Modelos BiológicosRESUMEN
Cutaneous cold-induced vasoconstriction is a normal physiological reaction mediated by alpha 2C-adrenergic receptors (α2C-ARs) expressed in vascular smooth muscle cells (VSMCs). When this reaction is exaggerated, Raynaud's phenomenon (RP) ensues. RP is more prevalent in females compared to age-matched men. We previously established that 17-ß estradiol (estrogen) upregulates α2C-ARs in human VSMCs via a cAMP/Epac/Rap pathway. We also showed that cAMP acts through JNK to increase α2C-AR expression. However, whether estrogen employs JNK to regulate α2C-AR is not investigated. Knowing that the α2C-AR promoter harbors an activator protein-1 (AP-1) binding site that can be potentially activated by JNK, we hypothesized that estrogen regulates α2C-AR expression through an Epac/JNK/AP-1 pathway. Our results show that estrogen (10-10 M) activated JNK in human VSMCs extracted from cutaneous arterioles. Pretreatment with ESI09 (10 µM; an Epac inhibitor), abolished estrogen-induced JNK activation. In addition, pre-treatment with SP600125 (3 µM; a JNK specific inhibitor) abolished estrogen-induced expression of α2C-AR. Importantly, estrogen-induced activation of α2C-AR promoter was attenuated with SP600125. Moreover, transient transfection of VSMCs with an Epac dominant negative mutant (Epac-DN) abolished estrogen-induced activation of α2C-AR promoter. However, co-transfection of constitutively active JNK mutant overrode the inhibitory effect of Epac-DN on α2C-AR promoter. Moreover, estrogen caused a concentration-dependent increase in the activity of AP-1-driven reporter construct. Mutation of AP-1 site in the α2C-AR promoter abolished its activation by estrogen. This in vitro estrogen-increased α2C-AR expression was mirrored by an increase in the ex vivo functional responsiveness of arterioles. Indeed, estrogen potentiated α2C-AR-mediated cold-induced vasoconstriction, which was abolished by SP600125. Collectively, these results indicate that estrogen upregulates α2C-AR expression via an EPAC-mediated JNK/AP-1- dependent mechanism. These results provide an insight into the mechanism by which exaggerated cold-induced vasoconstriction occurs in estrogen-replete females and identify Epac and JNK as potential targets for the treatment of RP.
Asunto(s)
Frío , AMP Cíclico/metabolismo , Estradiol/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Cola (estructura animal)/irrigación sanguínea , Factor de Transcripción AP-1/metabolismo , Vasoconstricción/efectos de los fármacos , Animales , Arteriolas/efectos de los fármacos , Arteriolas/enzimología , Células Cultivadas , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Masculino , Ratones Endogámicos C57BL , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Enfermedad de Raynaud/tratamiento farmacológico , Enfermedad de Raynaud/enzimología , Enfermedad de Raynaud/fisiopatología , Receptores Adrenérgicos alfa 2/genética , Transducción de Señal , Factor de Transcripción AP-1/genética , Regulación hacia ArribaRESUMEN
Flavonoids are a diverse group of bioactive polyphenolic compounds abundant in dietary plants and herbs. Regular consumption of flavonoids exerts cardio-vasculoprotective effects and may reduce the onset or progression of many cardiovascular diseases, particularly hypertension. Observational studies suggest inverse associations among either of these three combinations: a) anthocyanin intake and risk of myocardial infarction (MI), b) flavanone intake and risk of ischemic stroke and c) flavonol intake and risk of type 2 diabetes mellitus. Human randomized controlled trials (RCTs) show that catechins and quercetin impart significant blood pressure lowering effects. Mechanistically, flavonoids mediate their antihypertensive effects through increasing nitric oxide (NO) bioavailability, reducing endothelial cell oxidative stress or modulating vascular ion channel activity. In this review, we focus on the six main subgroups of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones. We further discuss their antihypertensive effects, and their possible mechanisms of regulating blood pressure. We conclude by addressing the safety of these compounds as well as their potential use in hypertension management and treatment.
Asunto(s)
Antihipertensivos/uso terapéutico , Flavonoides/uso terapéutico , Hipertensión/tratamiento farmacológico , Animales , Antihipertensivos/farmacología , Flavonoides/farmacología , Humanos , Hipertensión/fisiopatologíaRESUMEN
Preeclampsia, a major disorder of human pregnancy, manifests as persistent hypertension and proteinuria presenting after 20 weeks of pregnancy. Multiple systemic symptoms might be associated with preeclampsia including thrombocytopenia, liver impairment, pulmonary edema, and cerebral disturbances. However, vascular dysfunction remains the core pathological driver of preeclampsia. Defective placental implantation followed by dysfunctional placental spiral artery development promotes a hypoxic environment. Massive endothelial dysfunction characterized by reduced vasodilation, augmented vasoconstriction, and increased vascular permeability and inflammation ensues. Interestingly, the same signaling and inflammatory pathways implicated in preeclampsia appear to be shared with other vascular disorders involving alteration of α2 -AR function. The role of α2 -ARs in the regulation of microcirculatory function has long been recognized, thus raising the question of whether they are involved in the pathogenesis of vascular dysfunction in preeclampsia. Here, we review possible interplay between signaling and inflammatory pathways common to preeclampsia and α2 -AR function/regulation. We speculate on the potential contribution of these receptors to the observed phenotype and the potential role for their pharmacological modulators as therapeutic interventions with preeclampsia.
Asunto(s)
Preeclampsia/etiología , Receptores Adrenérgicos alfa 2/fisiología , Endotelio Vascular/fisiopatología , Femenino , Humanos , Hipertensión , EmbarazoRESUMEN
OBJECTIVE: The purpose of this study is to evaluate antibiotic-prescribing practices and adherence to IDSA guidelines for the treatment of uncomplicated urinary tract infections in Lebanon. METHODS: This observational prospective study was conducted in 15 community pharmacies in Lebanon over 1 year in adult females. A regimen of nitrofurantoin 100 mg bid for 5 days or fosfomycin 3 grams single dose were considered appropriate. For the bivariate analysis, the chi-square test was used. RESULTS: A total of 376 patients were included in this study. The prescribed antibiotic was appropriate in 35 percent of the patients. Age (more than 50 years) did not significantly affect the appropriateness of the prescribed antibiotic (p=0.508). The frequency of attacks per year (more than 3) negatively affected the choice of antibiotic (p=0.025). The dose and duration of the prescribed antibiotic was appropriate in 73 and 58 percent of the patients, respectively, with a significant inappropriate dose and duration with fluoroquinolones as compared to nitrofurantoin and fosfomycin (p < 0.001 for the dose and p=0.014 for the duration of therapy). CONCLUSIONS: In an era of increasing bacterial resistance, interventions that improve physicians' prescribing practices for uncomplicated urinary tract infections are needed.
RESUMEN
Cardiovascular disease (CVD) continues to be the leading cause of death worldwide. Atherosclerosis is a CVD characterized by plaque formation resulting from inflammation-induced insults to endothelial cells, monocytes, and vascular smooth muscle cells (VSMCs). Despite significant advances, current treatments for atherosclerosis remain insufficient, prompting the search for alternative modalities, including herbal medicine. Ziziphus nummularia is an herb commonly used in the amelioration of symptoms associated with many health conditions such as cold, diarrhea, cancer, and diabetes. However, its effect on the inflammation-induced behavior of VSMCs remains unknown. In this study, we sought to determine the effect of the ethanolic extract of Z. nummularia (ZNE) on TNF-α-induced phenotypic changes of human aortic smooth muscle cells (HASMCs). The treatment of HASMCs with ZNE decreased cell proliferation, adhesion to fibronectin, migration, and invasion. ZNE treatment also caused a concentration- and time-dependent reduction in the TNF-α-induced expression of matrix metalloproteases MMP-2 and MMP-9, NF-κB, and cell adhesion molecules ICAM-1 and VCAM-1. Furthermore, ZNE decreased the adhesion of THP-1 monocytes to HASMCs and endothelial cells in a concentration-dependent manner. These data provide evidence for the anti-inflammatory effect of Ziziphus nummularia, along with potential implications for its use as an agent that could ameliorate inflammation-induced atherogenic phenotype of VSMCs in atherosclerosis.