Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Infect Dis ; 229(4): 1019-1025, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37930308

RESUMEN

This study investigated the association between previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and risk of symptoms associated with post-COVID conditions among fully vaccinated paramedics in Canada. We included vaccinated paramedics who provided blood sample and questionnaire data on the same date during the study period. We examined the presence of symptoms associated with post-COVID conditions and depression severity against prior SARS-CoV-2 infection categories. Compared to the "no previous SARS-CoV-2 infection" group, there was no detected association between known prior SARS-CoV-2 infection (odds ratio [OR], 1.42 [95% confidence interval {CI}, 0.96-2.09]), nor unknown prior SARS-CoV-2 infection (OR, 0.54 [95% CI, 0.29-1.00]), and the presence of symptoms associated with post-COVID conditions.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Síndrome Post Agudo de COVID-19 , Paramédico , SARS-CoV-2 , Canadá/epidemiología
2.
Respirology ; 28(9): 860-868, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37400102

RESUMEN

BACKGROUND AND OBJECTIVE: Raised blood lactate secondary to high dose ß2 -agonist treatment has been reported in asthma exacerbations but has not been investigated during acute exacerbations of COPD (AECOPD). We explored associations of blood lactate measurements with disease outcomes and ß2 -agonist treatments during AECOPD. METHODS: Retrospective (n = 199) and prospective studies (n = 142) of patients hospitalized with AECOPD were conducted. The retrospective cohort was identified via medical records and the prospective cohort was recruited during hospitalization for AECOPD. Baseline demographics, comorbidities, ß2 -agonist treatment, biochemical measurements and clinical outcomes were compared between patients with normal (≤2.0 mmol/L) versus elevated lactate (>2.0 mmol/L). Regression analyses examined associations of lactate measurements with ß2 -agonist dosages. RESULTS: Demographic data and comorbidities were similar between high versus normal lactate groups in both cohorts. The populations were elderly (mean >70 years), predominantly male (>60%) with reduced FEV1 (%) 48.2 ± 19 (prospective cohort). Lactate was elevated in approximately 50% of patients during AECOPD and not related to evidence of sepsis. In the prospective cohort, patients with high lactate had more tachypnoea, tachycardia, acidosis and hyperglycaemia (p < 0.05) and received more non-invasive ventilation (37% vs. 9.7%, p < 0.001, prospective cohort). There was a trend to longer hospitalization (6 vs. 5 days, p = 0.06, prospective cohort). Higher cumulative ß2 -agonist dosages were linked to elevated lactate levels (OR 1.04, p = 0.01). CONCLUSION: Elevated lactate during AECOPD was common, unrelated to sepsis and correlated with high cumulative doses of ß2 -agonists. Raised lactate may indicate excessive ß2 -agonist treatment and should now be investigated as a possible biomarker.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2 , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Masculino , Anciano , Femenino , Agonistas de Receptores Adrenérgicos beta 2/efectos adversos , Estudios Prospectivos , Estudios Retrospectivos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Lactatos/uso terapéutico
3.
J Cell Sci ; 136(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37387118

RESUMEN

The yeast (Saccharomyces cerevisiae) plasma membrane (PM) is organised into specific subdomains that regulate surface membrane proteins. Surface transporters actively uptake nutrients in particular regions of the PM where they are also susceptible to substrate-induced endocytosis. However, transporters also diffuse into distinct subdomains termed eisosomes, where they are protected from endocytosis. Although most nutrient transporter populations are downregulated in the vacuole following glucose starvation, a small pool is retained in eisosomes to provide efficient recovery from starvation. We find the core eisosome subunit Pil1, a Bin, Amphiphysin and Rvs (BAR) domain protein required for eisosome biogenesis, is phosphorylated primarily by the kinase Pkh2. In response to acute glucose starvation, Pil1 is rapidly dephosphorylated. Enzyme localisation and activity screens suggest that the phosphatase Glc7 is the primary enzyme responsible for Pil1 dephosphorylation. Defects in Pil1 phosphorylation, achieved by depletion of GLC7 or expression of phospho-ablative or phospho-mimetic mutants, correlate with reduced retention of transporters in eisosomes and inefficient starvation recovery. We propose that precise post-translational control of Pil1 modulates nutrient transporter retention within eisosomes, depending on extracellular nutrient levels, to maximise recovery following starvation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Glucosa/metabolismo
4.
Cureus ; 15(1): e34465, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36874687

RESUMEN

OBJECTIVE: Emerging evidence indicates that longer SARS-CoV-2 vaccine dosing intervals results in an enhanced immune response. However, the optimal vaccine dosing interval for achieving maximum immunogenicity is unclear. METHODS: This study included samples from adult paramedics in Canada who received two doses of either BNT162b2 or mRNA-1273 vaccines and provided blood samples six months (170 to 190 days) after the first vaccine dose. The main exposure variable was vaccine dosing interval (days), categorized as "short" (first quartile), "moderate" (second quartile), "long" (third quartile), and "longest" interval (fourth quartile). The primary outcome was total spike antibody concentrations, measured using the Elecsys SARS-CoV-2 total antibody assay. Secondary outcomes included spike and receptor-binding domain (RBD) immunoglobulin G (IgG) antibody concentrations, and inhibition of angiotensin-converting enzyme 2 (ACE-2) binding to wild-type spike protein and several different Delta variant spike proteins. We fit a multiple log-linear regression model to investigate the association between vaccine dosing intervals and the antibody concentrations. RESULTS: A total of 564 adult paramedics (mean age 40 years, SD=10) were included. Compared to "short interval" (≤30 days), vaccine dosing intervals of the long (39-73 days) group (ß= 0.31, 95% Confidence interval (CI): 0.10-0.52) and the longest (≥74 days) group (ß = 0.82. 95% CI: 0.36-1.28) were associated with increased spike total antibody concentration. Compared to the short interval, the longest interval quartile was associated with higher spike IgG antibodies, while the long and longest intervals were associated with higher RBD IgG antibody concentrations. Similarly, the longest dosing intervals increased inhibition of ACE-2 binding to viral spike protein. CONCLUSION: Increased mRNA vaccine dosing intervals longer than 38 days result in higher levels of anti-spike antibodies and ACE-2 inhibition when assessed six months after the first COVID-19 vaccine.

5.
Proc Natl Acad Sci U S A ; 120(8): e2217194120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36800387

RESUMEN

Secreted protein toxins are widely used weapons in conflicts between organisms. Elucidating how organisms genetically adapt to defend themselves against these toxins is fundamental to understanding the coevolutionary dynamics of competing organisms. Within yeast communities, "killer" toxins are secreted to kill nearby sensitive yeast, providing a fitness advantage in competitive growth environments. Natural yeast isolates vary in their sensitivity to these toxins, but to date, no polymorphic genetic factors contributing to defense have been identified. We investigated the variation in resistance to the killer toxin K28 across diverse natural isolates of the Saccharomyces cerevisiae population. Using large-scale linkage mapping, we discovered a novel defense factor, which we named KTD1. We identified many KTD1 alleles, which provided different levels of K28 resistance. KTD1 is a member of the DUP240 gene family of unknown function, which is rapidly evolving in a region spanning its two encoded transmembrane helices. We found that this domain is critical to KTD1's protective ability. Our findings implicate KTD1 as a key polymorphic factor in the defense against K28 toxin.


Asunto(s)
Micotoxinas , Proteínas de Saccharomyces cerevisiae , Toxinas Biológicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores Asesinos de Levadura/genética , Factores Asesinos de Levadura/metabolismo , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Micotoxinas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Interface Focus ; 12(6): 20220042, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36330320

RESUMEN

In eukaryotes, intracellular physico-chemical properties like macromolecular crowding and cytoplasmic viscoelasticity influence key processes such as metabolic activities, molecular diffusion and protein folding. However, mapping crowding and viscoelasticity in living cells remains challenging. One approach uses passive rheology in which diffusion of exogenous fluorescent particles internalized in cells is tracked and physico-chemical properties inferred from derived mean square displacement relations. Recently, the crGE2.3 Förster resonance energy transfer biosensor was developed to quantify crowding in cells, though it is unclear how this readout depends on viscoelasticity and the molecular weight of the crowder. Here, we present correlative, multi-dimensional data to explore diffusion and molecular crowding characteristics of molecular crowding agents using super-resolved fluorescence microscopy and ensemble time-resolved spectroscopy. We firstly characterize in vitro and then apply these insights to live cells of budding yeast Saccharomyces cerevisiae. It is to our knowledge the first time this has been attempted. We demonstrate that these are usable both in vitro and in the case of endogenously expressed sensors in live cells. Finally, we present a method to internalize fluorescent beads as in situ viscoelasticity markers in the cytoplasm of live yeast cells and discuss limitations of this approach including impairment of cellular function.

7.
J Cell Biol ; 221(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36125415

RESUMEN

Upon internalization, many surface membrane proteins are recycled back to the plasma membrane. Although these endosomal trafficking pathways control surface protein activity, the precise regulatory features and division of labor between interconnected pathways are poorly defined. In yeast, we show recycling back to the surface occurs through distinct pathways. In addition to retrograde recycling pathways via the late Golgi, used by synaptobrevins and driven by cargo ubiquitination, we find nutrient transporter recycling bypasses the Golgi in a pathway driven by cargo deubiquitination. Nutrient transporters rapidly internalize to, and recycle from, endosomes marked by the ESCRT-III associated factor Ist1. This compartment serves as both "early" and "recycling" endosome. We show Ist1 is ubiquitinated and that this is required for proper endosomal recruitment and cargo recycling to the surface. Additionally, the essential ATPase Cdc48 and its adaptor Npl4 are required for recycling, potentially through regulation of ubiquitinated Ist1. This collectively suggests mechanistic features of recycling from endosomes to the plasma membrane are conserved.


Asunto(s)
Endosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ubiquitina , Proteínas de Transporte Vesicular , Adenosina Trifosfatasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Proteínas R-SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Proteínas de Transporte Vesicular/metabolismo
8.
Microorganisms ; 10(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35336166

RESUMEN

Lithium salts are used in the treatment of mood disorders, cancer, and Alzheimer's disease. It has been shown to prolong life span in several phyla; however, not yet in budding yeast. In our study, we investigate the influence of lithium on yeast cells' viability by characterizing protein aggregate formation, cell volume, and molecular crowding in the context of stress adaptation. While our data suggest a concentration-dependent growth inhibition caused by LiCl, we show an extended long-term survival rate as an effect of lithium addition upon glucose deprivation. We show that caloric restriction mitigates the negative impact of LiCl on cellular survival. Therefore, we suggest that lithium could affect glucose metabolism upon caloric restriction, which could explain the extended long-term survival observed in our study. We find furthermore that lithium chloride did not affect an immediate salt-induced Hsp104-dependent aggregate formation but cellular adaptation to H2O2 and acute glucose starvation. We presume that different salt types and concentrations interfere with effective Hsp104 recruitment or its ATP-dependent disaggregase activity as a response to salt stress. This work provides novel details of Li+ effect on live eukaryotic cells which may also be applicable in further research on the treatment of cancer, Alzheimer's, or other age-related diseases in humans.

9.
Mol Biol Cell ; 33(4): ar31, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080991

RESUMEN

Cell surface protein trafficking is regulated in response to nutrient availability, with multiple pathways directing surface membrane proteins to the lysosome for degradation in response to suboptimal extracellular nutrients. Internalized protein and lipid cargoes recycle back to the surface efficiently in glucose-replete conditions, but this trafficking is attenuated following glucose starvation. We find that cells with either reduced or hyperactive phosphatidylinositol 3-kinase (PI3K) activity are defective for endosome to surface recycling. Furthermore, we find that the yeast Gα subunit Gpa1, an endosomal PI3K effector, is required for surface recycling of cargoes. Following glucose starvation, mRNA and protein levels of a distinct Gα subunit Gpa2 are elevated following nuclear translocation of Mig1, which inhibits recycling of various cargoes. As Gpa1 and Gpa2 interact at the surface where Gpa2 concentrates during glucose starvation, we propose that this disrupts PI3K activity required for recycling, potentially diverting Gpa1 to the surface and interfering with its endosomal role in recycling. In support of this model, glucose starvation and overexpression of Gpa2 alter PI3K endosomal phosphoinositide production. Glucose deprivation therefore triggers a survival mechanism to increase retention of surface cargoes in endosomes and promote their lysosomal degradation.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Proteínas de Saccharomyces cerevisiae , Endosomas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Glucosa/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Anal Chem ; 93(51): 17020-17029, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34905685

RESUMEN

Digital PCR (dPCR) is the gold-standard analytical platform for rapid high-precision quantification of genomic fragments. However, current dPCR assays are generally limited to monitoring 1-2 analytes per sample, thereby limiting the platform's ability to address some clinical applications that require the simultaneous monitoring of 20-50 analytes per sample. Here, we present virtual-partition dPCR (VPdPCR), a novel analysis methodology enabling the detection of 10 or more target regions per color channel using conventional dPCR hardware and workflow. Furthermore, VPdPCR enables dPCR instruments to overcome upper quantitation limits caused by partitioning error. While traditional dPCR analysis establishes a single threshold to separate negative and positive partitions, VPdPCR establishes multiple thresholds to identify the number of unique targets present in each positive droplet based on fluorescence intensity. Each physical partition is then divided into a series of virtual partitions, and the resulting increase in partition count substantially decreases partitioning error. We present both a theoretical analysis of the advantages of VPdPCR and an experimental demonstration in the form of a 20-plex assay for noninvasive fetal aneuploidy testing. This demonstration assay─tested on 432 samples contrived from sheared cell-line DNA at multiple input concentrations and simulated fractions of euploid or trisomy-21 "fetal" DNA─is analyzed using both traditional dPCR thresholding and VPdPCR. VPdPCR analysis significantly lowers the variance of the chromosomal ratio across replicates and increases the accuracy of trisomy identification when compared to traditional dPCR, yielding > 98% single-well sensitivity and specificity. VPdPCR has substantial promise for increasing the utility of dPCR in applications requiring ultrahigh-precision quantitation.


Asunto(s)
ADN , Pruebas Diagnósticas de Rutina , ADN/genética , Reacción en Cadena de la Polimerasa
11.
Curr Top Membr ; 88: 75-118, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34862033

RESUMEN

Cell division, aging, and stress recovery triggers spatial reorganization of cellular components in the cytoplasm, including membrane bound organelles, with molecular changes in their compositions and structures. However, it is not clear how these events are coordinated and how they integrate with regulation of molecular crowding. We use the budding yeast Saccharomyces cerevisiae as a model system to study these questions using recent progress in optical fluorescence microscopy and crowding sensing probe technology. We used a Förster Resonance Energy Transfer (FRET) based sensor, illuminated by confocal microscopy for high throughput analyses and Slimfield microscopy for single-molecule resolution, to quantify molecular crowding. We determine crowding in response to cellular growth of both mother and daughter cells, in addition to osmotic stress, and reveal hot spots of crowding across the bud neck in the burgeoning daughter cell. This crowding might be rationalized by the packing of inherited material, like the vacuole, from mother cells. We discuss recent advances in understanding the role of crowding in cellular regulation and key current challenges and conclude by presenting our recent advances in optimizing FRET-based measurements of crowding while simultaneously imaging a third color, which can be used as a marker that labels organelle membranes. Our approaches can be combined with synchronized cell populations to increase experimental throughput and correlate molecular crowding information with different stages in the cell cycle.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Saccharomycetales , División Celular , Presión Osmótica , Saccharomyces cerevisiae
12.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830359

RESUMEN

Intracellular trafficking pathways control residency and bioactivity of integral membrane proteins at the cell surface. Upon internalisation, surface cargo proteins can be delivered back to the plasma membrane via endosomal recycling pathways. Recycling is thought to be controlled at the metabolic and transcriptional level, but such mechanisms are not fully understood. In yeast, recycling of surface proteins can be triggered by cargo deubiquitination and a series of molecular factors have been implicated in this trafficking. In this study, we follow up on the observation that many subunits of the Rpd3 lysine deacetylase complex are required for recycling. We validate ten Rpd3-complex subunits in recycling using two distinct assays and developed tools to quantify both. Fluorescently labelled Rpd3 localises to the nucleus and complements recycling defects, which we hypothesised were mediated by modulated expression of Rpd3 target gene(s). Bioinformatics implicated 32 candidates that function downstream of Rpd3, which were over-expressed and assessed for capacity to suppress recycling defects of rpd3∆ cells. This effort yielded three hits: Sit4, Dit1 and Ldb7, which were validated with a lipid dye recycling assay. Additionally, the essential phosphatidylinositol-4-kinase Pik1 was shown to have a role in recycling. We propose recycling is governed by Rpd3 at the transcriptional level via multiple downstream target genes.


Asunto(s)
Histona Desacetilasas/genética , Transferasas de Hidroximetilo y Formilo/genética , Proteína Fosfatasa 2/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , 1-Fosfatidilinositol 4-Quinasa/genética , Membrana Celular/genética , Proteínas Cromosómicas no Histona/genética , Endosomas/genética , Regulación Fúngica de la Expresión Génica/genética , Complejos Multiproteicos/genética , Mapas de Interacción de Proteínas/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
13.
Traffic ; 22(11): 397-408, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34498791

RESUMEN

Cell surface membrane proteins perform diverse and critical functions and are spatially and temporally regulated by membrane trafficking pathways. Although perturbations in these pathways underlie many pathologies, our understanding of these pathways at a mechanistic level remains incomplete. Using yeast as a model, we have developed an assay that reports on the surface activity of the uracil permease Fur4 in uracil auxotroph strains grown in the presence of limited uracil. This assay was used to screen a library of haploid deletion strains and identified mutants with both diminished and enhanced comparative growth in restricted uracil media. Factors identified, including various multisubunit complexes, were enriched for membrane trafficking and transcriptional functions, in addition to various uncharacterized genes. Bioinformatic analysis of expression profiles from many strains lacking transcription factors required for efficient uracil-scavenging validated particular hits from the screen, in addition to implicating essential genes not tested in the screen. Finally, we performed a secondary mating factor secretion screen to functionally categorize factors implicated in uracil-scavenging.


Asunto(s)
Proteínas de la Membrana , Proteínas de Saccharomyces cerevisiae , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Uracilo/metabolismo
14.
Anal Chem ; 93(9): 4208-4216, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33631072

RESUMEN

The gold standard of molecular pathogen detection is the quantitative polymerase chain reaction (qPCR). Modern qPCR instruments are capable of detecting 4-6 analytes in a single sample: one per optical detection channel. However, many clinical applications require multiplexing beyond this traditional single-well capacity, including the task of simultaneously testing for SARS-CoV-2 and other respiratory pathogens. This can be addressed by dividing a sample across multiple wells, or using technologies such as genomic sequencing and spatial arrays, but at the expense of significantly higher cost and lower throughput compared with single-well qPCR. These trade-offs represent unacceptable compromises in high-throughput screening scenarios such as SARS-CoV-2 testing. We demonstrate a novel method of detecting up to 20 targets per well with standard qPCR instrumentation: high-definition PCR (HDPCR). HDPCR combines TaqMan chemistry and familiar workflows with robust encoding to enable far higher levels of multiplexing on a traditional qPCR system without an increase in cost or reduction in throughput. We utilize HDPCR with a custom 20-Plex assay, an 8-Plex assay using unmodified predesigned single-plex assays from Integrated DNA Technologies and a 9-Plex pathogen panel inclusive of SARS-CoV-2 and other common respiratory viruses. All three assays were successful when tested on a variety of samples, with overall sample accuracies of 98.8, 98.3, and 100%, respectively. The HDPCR technology enables the large install base of qPCR instrumentation to perform mid-density multiplex diagnostics without modification to instrumentation or workflow, meeting the urgent need for increased diagnostic yield at an affordable price without sacrificing assay performance.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virología , Reacción en Cadena de la Polimerasa Multiplex/métodos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , ADN Viral/genética , Humanos , Sensibilidad y Especificidad
15.
J Cell Sci ; 134(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33443082

RESUMEN

Eukaryotic cells adapt their metabolism to the extracellular environment. Downregulation of surface cargo proteins in response to nutrient stress reduces the burden of anabolic processes whilst elevating catabolic production in the lysosome. We show that glucose starvation in yeast triggers a transcriptional response that increases internalisation from the plasma membrane. Nuclear export of the Mig1 transcriptional repressor in response to glucose starvation increases levels of the Yap1801 and Yap1802 clathrin adaptors, which is sufficient to increase cargo internalisation. Beyond this, we show that glucose starvation results in Mig1-independent transcriptional upregulation of various eisosomal factors. These factors serve to sequester a portion of nutrient transporters at existing eisosomes, through the presence of Ygr130c and biochemical and biophysical changes in Pil1, allowing cells to persist throughout the starvation period and maximise nutrient uptake upon return to replete conditions. This provides a physiological benefit for cells to rapidly recover from glucose starvation. Collectively, this remodelling of the surface protein landscape during glucose starvation calibrates metabolism to available nutrients.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Membrana Celular , Glucosa , Fosfoproteínas , Proteínas Represoras , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Methods ; 193: 54-61, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33157192

RESUMEN

The physical and chemical environment inside cells is of fundamental importance to all life but has traditionally been difficult to determine on a subcellular basis. Here we combine cutting-edge genomically integrated FRET biosensing to readout localized molecular crowding in single live yeast cells. Confocal microscopy allows us to build subcellular crowding heatmaps using ratiometric FRET, while whole-cell analysis demonstrates crowding is reduced when yeast is grown in elevated glucose concentrations. Simulations indicate that the cell membrane is largely inaccessible to these sensors and that cytosolic crowding is broadly uniform across each cell over a timescale of seconds. Millisecond single-molecule optical microscopy was used to track molecules and obtain brightness estimates that enabled calculation of crowding sensor copy numbers. The quantification of diffusing molecule trajectories paves the way for correlating subcellular processes and the physicochemical environment of cells under stress.


Asunto(s)
Células Eucariotas , Variaciones en el Número de Copia de ADN , Transferencia Resonante de Energía de Fluorescencia , Glucosa , Microscopía Confocal , Concentración Osmolar , Saccharomyces cerevisiae
17.
Curr Biol ; 30(3): 465-479.e5, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31956026

RESUMEN

In yeast, the main ubiquitin ligase responsible for the sorting of proteins to the lysosomal vacuole is Rsp5, a member of the Nedd4 family of ligases whose distinguishing features are a catalytic homologous to E6AP C terminus (HECT) domain and 3 central WW domains that bind PY motifs in target proteins. Many substrates do not bind Rsp5 directly and instead rely on PY-containing adaptor proteins that interact with Rsp5. Recent studies indicate that the activities of these adaptors are elevated when they undergo ubiquitination, yet the mechanism whereby ubiquitination activates the adaptors and how this process is regulated remain unclear. Here, we report on a mechanism that explains how ubiquitination stimulates adaptor function and how this process can be regulated by the Rsp5-associated deubiquitinase, Ubp2. Our overexpression experiments revealed that several adaptors compete for Rsp5 in vivo. We found that the ability of the adaptors to compete effectively was enhanced by their ubiquitination and diminished by a block of their ubiquitination. Ubiquitination-dependent adaptor activation required a ubiquitin-binding surface within the Rsp5 catalytic HECT domain. Finally, like constitutively ubiquitinated adaptors, a Ubp2 deficiency increased both the adaptor activity and the ability to compete for Rsp5. Our data support a model whereby ubiquitinated Rsp5 adaptors are more active when "locked" onto Rsp5 via its N-lobe ubiquitin-binding surface and less active when they are "unlocked" by Ubp2-mediated deubiquitination.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación , Endopeptidasas/deficiencia , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
18.
Sci Eng Ethics ; 25(5): 1485-1497, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30465298

RESUMEN

Genetically engineered (GE) organisms have been at the center of ethical debates among the public and regulators over their potential risks and benefits to the environment and society. Unlike the currently commercial GE crops that express resistance or tolerance to pesticides or herbicides, a new GE crop produces two bioactive nutrients (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) that heretofore have largely been produced only in aquatic environments. This represents a novel category of risk to ecosystem functioning. The present paper describes why growing oilseed crops engineered to produce EPA and DHA means introducing into a terrestrial ecosystem a pair of highly bioactive nutrients that are novel to terrestrial ecosystems and why that may have ecological and physiological consequences. More importantly perhaps, this paper argues that discussion of this novel risk represents an opportunity to examine the way the debate over genetically modified crops is being conducted.


Asunto(s)
Productos Agrícolas/genética , Ácidos Docosahexaenoicos/biosíntesis , Ácido Eicosapentaenoico/biosíntesis , Ingeniería Genética/ética , Plantas Modificadas Genéticamente , Discusiones Bioéticas , Ecosistema , Nutrientes/biosíntesis , Aceites de Plantas/química
19.
Biochem Soc Trans ; 46(6): 1551-1558, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30381337

RESUMEN

Various membrane trafficking pathways transport molecules through the endosomal system of eukaryotic cells, where trafficking decisions control the localisation and activity of a diverse repertoire of membrane protein cargoes. The budding yeast Saccharomyces cerevisiae has been used to discover and define many mechanisms that regulate conserved features of endosomal trafficking. Internalised surface membrane proteins first localise to endosomes before sorting to other compartments. Ubiquitination of endosomal membrane proteins is a signal for their degradation. Ubiquitinated cargoes are recognised by the endosomal sorting complex required for transport (ESCRT) apparatus, which mediate sorting through the multivesicular body pathway to the lysosome for degradation. Proteins that are not destined for degradation can be recycled to other intracellular compartments, such as the Golgi and the plasma membrane. In this review, we discuss recent developments elucidating the mechanisms that drive membrane protein degradation and recycling pathways in yeast.


Asunto(s)
Endosomas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Ubiquitina/metabolismo , Endosomas/genética , Proteínas de la Membrana/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
F1000Res ; 7: 752, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364075

RESUMEN

International government guidance recommends patient and public involvement (PPI) to improve the relevance and quality of research.  PPI is defined as research being carried out 'with' or 'by' patients and members of the public rather than 'to', 'about' or 'for' them ( http://www.invo.org.uk/). Patient involvement is different from collecting data from patients as participants.  Ethical considerations also differ.  PPI is about patients actively contributing through discussion to decisions about research design, acceptability, relevance, conduct and governance from study conception to dissemination.  Occasionally patients lead or do research.  The research methods of PPI range from informal discussions to partnership research approaches such as action research, co-production and co-learning. This article discusses how researchers can involve patients when they are applying for research funding and considers some opportunities and pitfalls.  It reviews research funder requirements, draws on the literature and our collective experiences as clinicians, patients, academics and members of UK funding panels.


Asunto(s)
Toma de Decisiones , Investigación sobre Servicios de Salud , Participación del Paciente , Investigadores , Humanos , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA