Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 358: 120949, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657416

RESUMEN

Biodiversity conservation and management in urban aquatic ecosystems is crucial to human welfare, and environmental DNA (eDNA)-based methods have become popular in biodiversity assessment. Here we report a highly overlooked source of significant false positives for eDNA-based biodiversity assessment in urban aquatic ecosystems supplied with treated wastewater - eDNA pollution originating from treated wastewater represents a noteworthy source of false positives. To investigate whether eDNA pollution is specific to a certain treatment or prevalent across methods employed by wastewater treatment plants, we conducted tests on effluent treated using three different secondary processes, both before and after upgrades to tertiary treatment. We metabarcoded eDNA collected from effluent immediately after full treatment and detected diverse native and non-native, commercial and ornamental fishes (48 taxa) across all treatment processes before and after upgrades. Thus, eDNA pollution occurred irrespective of the treatment processes applied. Release of eDNA pollution into natural aquatic ecosystems could translate into false positives for eDNA-based analysis. We discuss and propose technical solutions to minimize these false positives in environmental nucleic acid-based biodiversity assessments and conservation programs.


Asunto(s)
Biodiversidad , ADN Ambiental , ADN Ambiental/análisis , Aguas Residuales , Monitoreo del Ambiente/métodos , Animales , Ecosistema
2.
J Hazard Mater ; 470: 134170, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613957

RESUMEN

Cyanobacterial blooms, often dominated by Microcystis aeruginosa, are capable of producing estrogenic effects. It is important to identify specific estrogenic compounds produced by cyanobacteria, though this can prove challenging owing to the complexity of exudate mixtures. In this study, we used untargeted metabolomics to compare components of exudates from microcystin-producing and non-microcystin-producing M. aeruginosa strains that differed with respect to their ability to produce microcystins, and across two growth phases. We identified 416 chemicals and found that the two strains produced similar components, mainly organoheterocyclic compounds (20.2%), organic acids and derivatives (17.3%), phenylpropanoids and polyketides (12.7%), benzenoids (12.0%), lipids and lipid-like molecules (11.5%), and organic oxygen compounds (10.1%). We then predicted estrogenic compounds from this group using random forest machine learning. Six compounds (daidzin, biochanin A, phenylethylamine, rhein, o-Cresol, and arbutin) belonging to phenylpropanoids and polyketides (3), benzenoids (2), and organic oxygen compound (1) were tested and exhibited estrogenic potency based upon the E-screen assay. This study confirmed that both Microcystis strains produce exudates that contain compounds with estrogenic properties, a growing concern in cyanobacteria management.


Asunto(s)
Estrógenos , Aprendizaje Automático , Metabolómica , Microcistinas , Microcystis , Microcystis/metabolismo , Microcystis/crecimiento & desarrollo , Microcistinas/metabolismo , Microcistinas/análisis , Microcistinas/química , Estrógenos/metabolismo , Estrógenos/química
3.
Sci Total Environ ; 919: 170747, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340819

RESUMEN

Microcystis aeruginosa is a ubiquitous freshwater cyanobacterium best known for producing hepatotoxic microcystins; however, this common bloom-forming species also produces myriad biologically active and potentially deleterious other metabolites. Our understanding of the effects of these non-microcystin metabolites on fish is limited. In this study, we evaluated cytotoxicity of extracellular metabolites harvested from both microcystin-producing (MC+) and non-producing (MC-) strains of M. aeruginosa on rainbow trout (Oncorhynchus mykiss) cell lines derived from tissues of the brain, pituitary, heart, gonads, gills, skin, liver, and milt. We also examined the influence of M. aeruginosa exudates (MaE) on the expression of critical reproduction-related genes using the same cell lines. We found that exudates of the MC- M. aeruginosa strain significantly reduced viability in RTBrain, RTgill-W1, and RT-milt5 cell lines and induced significant cellular stress and/or injury in six of the eight cell lines-highlighting potential target tissues of cyanobacterial cytotoxic effects. Observed sublethal consequences of Microcystis bloom exposure occurred with both MC+ and MC- strains' exudates and significantly altered expression of developmental and sex steroidogenic genes. Collectively, our results emphasize the contributions of non-MC metabolites to toxicity of Microcystis-dominated algal blooms and the need to integrate the full diversity of M. aeruginosa compounds-beyond microcystins-into ecotoxicological risk assessments.


Asunto(s)
Cianobacterias , Microcystis , Oncorhynchus mykiss , Animales , Microcistinas/metabolismo , Oncorhynchus mykiss/metabolismo , Línea Celular , Cianobacterias/metabolismo , Reproducción , Expresión Génica
4.
Ecol Appl ; 34(1): e2826, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36840509

RESUMEN

Environmental DNA (eDNA) has increasingly been used to detect rare species (e.g., newly introduced nonindigenous species) in both terrestrial and aquatic ecosystems, often with distinct advantages over traditional methods. However, whether water eDNA signals can be used to inform invasion risks remains debatable owing to inherent uncertainties associated with the methods used and the varying conditions among study systems. Here, we sampled eDNA from canals of the central route of the South-to-North Water Diversion Project (hereafter SNWDP) in China to investigate eDNA distribution and efficacy to inform invasion risks in a unique lotic system. We first conducted a total of 16 monthly surveys in this system (two sites in the source reservoir and four sites in the main canal) to test if eDNA could be applied to detect an invasive, biofouling bivalve, the golden mussel Limnoperna fortunei. Second, we initiated a one-time survey in a sub-canal of the SNWDP using refined sampling (12 sites in ~22 km canal) and considered a few environmental predictors. We found that detection of target eDNA in the main canal was achieved up to 1100 km from the putative source population but was restricted to the warmer months (May-November). Detection probability exhibited a significant positive relationship with average daily minimum air temperature and with water temperature, consistent with the expected spawning season. eDNA concentration in the main canal generally fluctuated across months and sites and was generally higher in warmer months. Golden mussel eDNA concentration in the sub-canal decreased significantly with distance from the source and with increasing water temperature and became almost undetectable at ~22 km distance. Given the enormity of the SNWDP, golden mussels may eventually expand their distribution in the main canal, with established "bridgehead" populations facilitating further spread. Our findings suggest an elevated invasion risk of golden mussels in the SNWDP in warm months, highlighting the critical period for spread and, possibly, management.


Asunto(s)
Incrustaciones Biológicas , Bivalvos , ADN Ambiental , Animales , ADN Ambiental/genética , Agua , Ecosistema , Bivalvos/genética
5.
Aquat Toxicol ; 263: 106705, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37776710

RESUMEN

Some well-known hazards of blooming cyanobacteria are caused by toxic metabolites such as microcystins (MCs), though many other bioactive chemicals of unknown toxicity are present in their exudates. It is also unclear whether toxicity of cyanobacterial cells depends on growth phases in the life cycle. In this study, we compared toxicity to Daphnia magna of Microcystis aeruginosa - a common cyanobacterial species - exudates (MaE) from two MC-producing strains over both exponential growth and stationary phases in acute and chronic experiments. Specifically, we assessed mitochondrial dysfunction, oxidative stress and lipid peroxidation, and filtering activity and heartbeat rate of Daphnia exposed to MaE. All MaE treatments induced common characteristics of Microcystis toxicity including disorder in the mitochondrial membrane and aberrant heart rate. MaE from cells at stationary growth phase were more toxic than those at exponential phase. Surprisingly, the MC-lower strain had higher toxicity than MC-higher one. Microcystis at different stage of blooms may differentially affect waterfleas owing to variable MaE-induced physiological dysfunction, abundance and grazing rate. Our study suggested that Microcystis strains with lower microcystin-producing ability might release other detrimental chemicals and should not be ignored in harmful bloom monitoring.


Asunto(s)
Cianobacterias , Microcystis , Contaminantes Químicos del Agua , Animales , Microcystis/metabolismo , Contaminantes Químicos del Agua/toxicidad , Cianobacterias/metabolismo , Microcistinas/toxicidad , Microcistinas/metabolismo , Daphnia/metabolismo , Estrés Oxidativo
6.
Ecotoxicol Environ Saf ; 256: 114840, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37001191

RESUMEN

Harmful cyanobacterial blooms have caused numerous biosecurity incidents owing to the production of hazardous secondary metabolites such as microcystin. Additionally, cyanobacteria also release many other components that have not been explored. We identified compounds of a toxic mixture exudated from a dominant, blooming species, Microcystis aeruginosa, and found that phytosphingosine (PHS) was one of the bioactive components. Since PHS exhibited toxicity and is deemed a hazardous substance by the European Chemicals Agency, we hypothesized that PHS is a potentially toxic compound in M. aeruginosa exudates. However, the mechanisms of PHS ecotoxicity remain unclear. We assessed the cytotoxicity of PHS using an in vitro cell model in eight human cell lines and observed that the nasopharyngeal carcinoma cell line CNE2 was the most sensitive. We exposed CNE2 cells to 0-25 µmol/L PHS for 24 hr to explore its toxicity and mechanism. PHS exposure resulted in abnormal nuclear morphology, micronuclei, and DNA damage. Moreover, PHS significantly inhibited cell proliferation and arrested cell cycle at S phase. The results of Western blot suggested that PHS increased the expression of DNA damage-related proteins (ATM, p-P53 and P21) and decreased the expression of S phase-related proteins (CDK2, CyclinA2 and CyclinE1), indicating the toxicological mechanism of PHS on CNE2 cells. These data provide evidence that PHS has genetic toxicity and inhibits cell proliferation by damaging DNA. Our study provides evidence that PHS inhibits cell proliferation by damaging DNA. While additional work is required, we propose that PHS been considered as a potentially toxic component in MaE in addition to other well-characterized secondary compounds.


Asunto(s)
Cianobacterias , Microcystis , Humanos , Microcistinas/toxicidad , Proliferación Celular , Línea Celular
7.
Sci Total Environ ; 857(Pt 2): 159257, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36208737

RESUMEN

Release of toxic cyanobacterial secondary metabolites threatens biosecurity, foodwebs and public health. Microcystis aeruginosa (Ma), the dominant species in global freshwater cyanobacterial blooms, produces exudates (MaE) that cause adverse outcomes including nerve damage. Previously, we identified > 300 chemicals in MaE. It is critical to investigate neurotoxicity mechanisms of active substances among this suite of Ma compounds. Here, we screened 103 neurotoxicity assays from the ToxCast database to reveal targets of action of MaE using machine learning. We then built a potential Adverse Outcome Pathway (AOP) to identify neurotoxicity mechanisms of MaE as well as key targets. Finally, we selected potential neurotoxins matched with those targets using molecular docking. We found 38 targets that were inhibited and eight targets that were activated, collectively mainly related to neurotransmission (i.e. cholinergic, dopaminergic and serotonergic neurotransmitter systems). The potential AOP of MaE neurotoxicity could be caused by blocking calcium voltage-gated channel (CACNA1A), because of antagonizing neurotransmitter receptors, or because of inhibiting solute carrier transporters. We identified nine neurotoxic MaE compounds with high affinity to those targets, including LysoPC(16:0), 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine, egonol glucoside, polyoxyethylene (600) monoricinoleate, and phytosphingosine. Our study enhances understanding of neurotoxicity mechanisms and identifies neurotoxins in cyanobacterial bloom exudates, which may help identify priority compounds for cyanobacteria management.


Asunto(s)
Cianobacterias , Microcystis , Neurotoxinas/toxicidad , Neurotoxinas/metabolismo , Simulación del Acoplamiento Molecular , Cianobacterias/química , Microcystis/metabolismo , Exudados y Transudados
9.
Toxicology ; 482: 153370, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36334778

RESUMEN

Cyanobacterial blooms, usually dominated by Microcystis aeruginosa, pose a serious threat to global freshwater ecosystems owing to their production and release of various harmful secondary metabolites. Detection of the chemicals in M. aeruginosa exudates using metabolomics technology revealed that phytosphingosine (PHS) was one of the most abundant compounds. However, its specific toxicological mechanism remained unclear. CNE-2 cells were selected to illustrate the cytotoxic mechanism of PHS, and it was determined to cause excessive production of reactive oxygen species and subsequently damage the mitochondrial structure. Mitochondrial membrane rupture led to matrix mitochondrial membrane potential disintegration, which induced Ca2+ overload and interrupted ATP synthesis. Furthermore, rupture of the mitochondrial membrane induced the opening of the permeability transition pore, which caused the release of proapoptotic factors into the cytoplasm and the expression of apoptosis-related proteins Bax, Bcl-2, cytochrome-c and cleaved caspase-3 in CNE-2 cells. These events, in turn, activated the mitochondrially mediated intrinsic apoptotic pathway. A mitochondrial repair mechanism, namely, PINK1/Parkin-mediated mitophagy, was then blocked, which further promoted apoptosis. Our findings suggest that more attention should be paid to the ecotoxicity of PHS, which is already listed as a contaminant of emerging concern.


Asunto(s)
Ecosistema , Esfingosina , Apoptosis , Citocromos c
10.
Freshw Biol ; 67(9): 1559-1570, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36246039

RESUMEN

Biological invasions, especially invasive alien aquatic plants, are a major and growing ecological and socioeconomic problem worldwide. Freshwater systems are particularly vulnerable to invasion, where impacts of invasive alien species can damage ecological structure and function. Identifying abiotic and biotic factors that mediate successful invasions is a management priority. Our aim was to determine the environmental correlates of Elodea nuttallii; a globally significant invasive aquatic species. Elodea nuttallii presence/absence (occurrence), extent (patch area) and percentage cover (density) was visually assessed from a boat throughout Lough Erne (approximately 144 km2), County Fermanagh, Northern Ireland during the active summer growth season (July-September). In addition, substrate type and zebra mussel Dreissena polymorpha occurrence was recorded. Fourteen water chemistry variables were collected monthly from 12 recording stations throughout the lake during the 9 years before the survey to spatially interpolate values and establish temporal trajectories in their change. Shoreline land use was derived from CORINE land cover maps. Environmental associations between E. nuttallii, substrate, D. polymorpha, water chemistry and land use were assessed. Elodea nuttallii occurrence was positively associated with water conductivity, alkalinity, suspended solids, phosphorus (both total and soluble) and chlorophyll-a concentrations, but negatively associated with pH and total oxidised nitrogen. E. nuttallii patch extent and proportional cover were positively associated, to varying degrees, with the presence of D. polymorpha, biological oxygen demand, water clarity and soft substrate, but negatively associated with urban development and ammonium. Elodea nuttallii displayed high levels of phenotypic plasticity in response to environmental variation, allowing it to adapt to a wide range of conditions and potentially gain competitive advantage over native or other invasive macrophytes.It is evident that multiple abiotic and biotic factors, including facilitation by co-occurring invasive dreissenid mussels, interact to influence the distribution and abundance of E. nuttallii. Thus, it is necessary to consider a more comprehensive environmental context when planning Elodea management strategies.

11.
Ecotoxicol Environ Saf ; 245: 114119, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36174318

RESUMEN

Cyanobacterial harmful algal blooms (cHABs) pose a risk to exposed aquatic and terrestrial species. Numerous studies have addressed effects of single toxins while much less attention has been devoted to mixtures of cHAB metabolites that are continually released by living cyanobacteria. Neuro-impairment associated with cHABs has been reported in fish, though the mechanism remains unclear. Here we exposed embryos of Sinocyclocheilus grahami, an endangered fish, to Microcystis aeruginosa exudates (MaE) to evaluate neurotoxicity and the toxicity mechanism(s). We found that MaE affected embryonic development by increasing malformation and mortality rates and decreasing the fertilization rate. MaE also inhibited fish neurobehavior including touch response, social frequency, swimming distance, and aggravated light-stimulation response. Neurobehavior suppression resulted from a decrease in excitatory neurotransmitters acetylcholine and dopamine, even though receptors increased. MaE also affected gene and protein expression of neurotransmitters, synthetic and/or degrading enzymes, and receptors. Our findings shed light on specific mechanisms by which MaE induces neurotoxicity in early life stages in fish and contributes to improvement of the conservation strategy for this species.


Asunto(s)
Cianobacterias , Cyprinidae , Microcystis , Acetilcolina , Animales , Dopamina/metabolismo , Exudados y Transudados , Floraciones de Algas Nocivas , Microcistinas/toxicidad , Microcystis/metabolismo
12.
Sci Total Environ ; 849: 157924, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35952866

RESUMEN

Invasive dreissenid mussels have reengineered many freshwater ecosystems in North America and Europe. However, few studies have directly linked their filter feeding activity with ecological effects except in laboratory tests or small-scale field enclosures. We investigated in situ grazing on lake seston by dreissenid mussels (mainly quagga mussel Dreissena rostriformis bugensis) using a 'control volume' approach in the nearshore of eastern Lake Erie in 2016. Flow conditions were measured using an acoustic Doppler current profiler, surrounded by three vertical sampling stations that were arranged in a triangular configuration to collect time-integrated water samples from five different depths. Seston variables, including chlorophyll a, phaeopigment, particulate organic carbon and nitrogen, and particulate phosphorus, along with stoichiometric ratios and water flow over mussel colonies, were considered when estimating grazing rates. We observed suboptimal flow velocity for mussel grazing, i.e., 0.028 m s-1 at 0.1 m above bottom (mab), and resuspension was deemed minimal. Water temperature (mean: 25.1 °C) and an unstratified water column were optimal for grazing. Concentration of seston was low (mean: 0.2 mg L-1 particulate organic carbon) and decreased from surface to lakebed where noticeable depletion was observed. Grazing rates calculated at discrete depths varied substantially among trials, with maximum rates occurring at 0.25 or 0.5 mab. Positive grazing rates were restricted to 0.5 mab and below, defining an effective grazing zone (0.1-0.5 mab) in which the flow velocity, seston concentration, and water depth were consistently and positively correlated with grazing rates of different lake seston variables. Horizontal changes in stoichiometric ratios of seston were strongly associated with grazing rates, revealing higher uptake of particulate phosphorus than nitrogen and carbon. Our study supports the nearshore phosphorus shunt hypothesis, which posits that dreissenid mussels retain phosphorus on the lake bottom and contribute to a wide range of ecological effects on freshwater ecosystems.


Asunto(s)
Bivalvos , Dreissena , Animales , Carbono , Clorofila A , Ecosistema , Lagos , Nitrógeno , Fósforo , Agua
13.
Mol Ecol ; 31(13): 3598-3612, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35560847

RESUMEN

While adaptation is commonly thought to result from selection on DNA sequence-based variation, recent studies have highlighted an analogous epigenetic component as well. However, the relative roles of these mechanisms in facilitating population persistence under environmental heterogeneity remain unclear. To address the underlying genetic and epigenetic mechanisms and their relationship during environmental adaptation, we screened the genomes and epigenomes of nine global populations of a predominately sessile marine invasive tunicate, Botryllus schlosseri. We detected clear population differentiation at the genetic and epigenetic levels. Patterns of genetic and epigenetic structure were significantly influenced by local environmental variables. Among these variables, minimum annual sea surface temperature was identified as the top explanatory variable for both genetic and epigenetic variation. However, patterns of population structure driven by genetic and epigenetic variation were somewhat distinct, suggesting possible autonomy of epigenetic variation. We found both shared and specific genes and biological pathways among genetic and epigenetic loci associated with environmental factors, consistent with complementary and independent contributions of genetic and epigenetic variation to environmental adaptation in this system. Collectively, these mechanisms may facilitate population persistence under environmental change and sustain successful invasions across novel environments.


Asunto(s)
Epigenómica , Variación Genética , Adaptación Fisiológica/genética , Epigénesis Genética , Variación Genética/genética , Genética de Población , Genoma
14.
Front Microbiol ; 13: 1075621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741884

RESUMEN

Cyanobacterial harmful algal blooms (cHABs) dominated by Microcystis aeruginosa threaten the ecological integrity and beneficial uses of lakes globally. In addition to producing hepatotoxic microcystins (MC), M. aeruginosa exudates (MaE) contain various compounds with demonstrated toxicity to aquatic biota. Previously, we found that the ecotoxicity of MaE differed between MC-producing and MC-free strains at exponential (E-phase) and stationary (S-phase) growth phases. However, the components in these exudates and their specific harmful effects were unclear. In this study, we performed untargeted metabolomics based on liquid chromatography-mass spectrometry to reveal the constituents in MaE of a MC-producing and a MC-free strain at both E-phase and S-phase. A total of 409 metabolites were identified and quantified based on their relative abundance. These compounds included lipids, organoheterocyclic compounds, organic acid, benzenoids and organic oxygen compounds. Multivariate analysis revealed that strains and growth phases significantly influenced the metabolite profile. The MC-producing strain had greater total metabolites abundance than the MC-free strain at S-phase, whereas the MC-free strain released higher concentrations of benzenoids, lipids, organic oxygen, organic nitrogen and organoheterocyclic compounds than the MC-producing strain at E-phase. Total metabolites had higher abundance in S-phase than in E- phase in both strains. Analysis of differential metabolites (DMs) and pathways suggest that lipids metabolism and biosynthesis of secondary metabolites were more tightly coupled to growth phases than to strains. Abundance of some toxic lipids and benzenoids DMs were significantly higher in the MC-free strain than the MC-producing one. This study builds on the understanding of MaE chemicals and their biotoxicity, and adds to evidence that non-MC-producing strains of cyanobacteria may also pose a threat to ecosystem health.

15.
Harmful Algae ; 108: 102080, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34588116

RESUMEN

Monitoring of cyanobacterial bloom biomass in large lakes at high resolution is made possible by remote sensing. However, monitoring cyanobacterial toxins is only feasible with grab samples, which, with only sporadic sampling, results in uncertainties in the spatial distribution of toxins. To address this issue, we conducted two intensive "HABs Grabs" of microcystin (MC)-producing Microcystis blooms in the western basin of Lake Erie. These were one-day sampling events during August of 2018 and 2019 in which 100 and 172 grab samples were collected, respectively, within a six-hour window covering up to 2,270 km2 and analyzed using consistent methods to estimate the total mass of MC. The samples were analyzed for 57 parameters, including toxins, nutrients, chlorophyll, and genomics. There were an estimated 11,513 kg and 30,691 kg of MCs in the western basin during the 2018 and 2019 HABs Grabs, respectively. The bloom boundary poses substantial issues for spatial assessments because MC concentration varied by nearly two orders of magnitude over very short distances. The MC to chlorophyll ratio (MC:chl) varied by a factor up to 5.3 throughout the basin, which creates challenges for using MC:chl to predict MC concentrations. Many of the biomass metrics strongly correlated (r > 0.70) with each other except chlorophyll fluorescence and phycocyanin concentration. While MC and chlorophyll correlated well with total phosphorus and nitrogen concentrations, MC:chl correlated with dissolved inorganic nitrogen. More frequent MC data collection can overcome these issues, and models need to account for the MC:chl spatial heterogeneity when forecasting MCs.


Asunto(s)
Cianobacterias , Microcystis , Floraciones de Algas Nocivas , Lagos , Fósforo
16.
Sci Total Environ ; 765: 144435, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33418329

RESUMEN

The quagga mussel (Dreissena rostriformis bugensis) is a filter-feeding invasive species that has re-engineered many freshwater ecosystems worldwide. High clearance rates (CRs) and dense populations underpin their ecological impacts. CRs, however, are highly variable, as are environmental factors that regulate them. Despite their widespread distribution in Europe and North America, knowledge of how multiple environmental factors regulate CRs of quagga mussels remains limited. We investigated quagga mussel CRs under varying conditions including water temperature, food availability, habitat depth, flow velocity, and duration of incubation in chambers with both static and flowing water. We found that CR was positively related to water temperature and initial food concentration in static chambers. When coupled with limited food concentration, cold water (7.5 °C), due to a deep-water upwelling event, produced very low CR (~ 10× lower) compared to warmer water (12-24 °C) (0.47 vs. 3.12-5.84 L g-1 DW h-1). Mussels from deeper water (20 m) had CRs that were ~ 3.5× higher than from shallower depths (2-10 m) and CRs were inversely affected by total mussel dry weight. Flow rates from 1 to 22 cm s-1 generated a unimodal pattern of CR with an optimal flow velocity of 6-12 cm s-1 (~ 2× higher than suboptimal CRs). Enhanced flow velocity (22 cm s-1), reflective of storm conditions in shallow waters, significantly increased the closing/reopening activity of mussel valves relative to lower velocities (1-12 cm s-1). Incubation time had a strong negative effect (~ 2-4× reduction) on CRs likely reflecting refiltration in static chambers versus food saturation of mussels in flowing chambers, respectively. Our findings highlight how multiple factors can influence quagga mussel CRs by factors of 2-10. Given widespread habitat heterogeneity in large aquatic ecosystems, whole-lake estimates of mussel impacts should include multiple regulatory factors that affect mussel filtration.


Asunto(s)
Bivalvos , Dreissena , Animales , Ecosistema , Europa (Continente) , Lagos , América del Norte
17.
Mar Environ Res ; 159: 104993, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32662432

RESUMEN

Ocean warming associated with global climate change renders marine ecosystems susceptible to biological invasions. Here, we used species distribution models to project habitat suitability for eight invasive ascidians under present-day and future climate scenarios. Distance to shore and maximum sea surface temperature were identified as the most important variables affecting species distributions. Results showed that eight ascidians might respond differently to future climate change. Alarmingly, currently colonized areas are much smaller than predicted, suggesting ascidians may expand their invasive ranges. Areas such as Americas, Europe and Western Pacific have high risks of receiving new invasions. In contrast, African coasts, excluding the Mediterranean side, are not prone to new invasions, likely due to the high sea surface temperature there. Our results highlight the importance of climate change impacts on future invasions and the need for accurate modelling of invasion risks, which can be used as guides to develop management strategies.


Asunto(s)
Cambio Climático , Urocordados , Animales , Ecosistema , Europa (Continente) , Especies Introducidas , Temperatura
18.
Glob Chang Biol ; 26(9): 4880-4893, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32663906

RESUMEN

Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio-economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid-21st century. Based on responses from 36 experts in biological invasions, moderate (20%-30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions-transport, climate change and socio-economic change-were predicted to significantly affect future impacts of alien species on biodiversity even under a best-case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best-case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post-2020 Framework of the Convention on Biological Diversity.


Asunto(s)
Biodiversidad , Especies Introducidas , Cambio Climático , Ecosistema , Predicción , Humanos
19.
J Hazard Mater ; 385: 121625, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31753672

RESUMEN

Despite recent advances in assessing lethal effects of antibiotics on freshwater organisms, little is known about their potential consequences on community composition and function, which are essential for assessing the ecological risk of these pollutants. Here, we investigated the impact of norfloxacin (NOR) on the short-term (≤ 6 days) dynamics of co-cultured Scenedesmusquadricauda-Chlorella vulgaris and Scenedesmusobliquus-C. vulgaris, and the long-term (≤ 70 days) dynamics of co-cultured S.obliquus-C. vulgaris in experiments with or without grazer Daphnia magna at sublethal antibiotic concentrations (0, 0.5, 2 and 8 mg L-1). NOR increased the relative abundance of Scenedesmus species in the absence of grazers but exerted opposite effects when Daphnia was present in both short- and long-term experiments due to reduced colony size. Meanwhile, increasing NOR concentrations led to quickly increased total algal density in the initial stage, followed by a sharp decline in the long-term experiment in the absence of grazers; when Daphnia was present, population fluctuations were even larger for both prey and predator species (e.g., grazer extinction at the highest concentration). Thus, NOR affected the outcome of species interactions and decreased temporal stability of plankton ecosystems, suggesting that antibiotics have more extensive impacts than presently recognized.


Asunto(s)
Antibacterianos/toxicidad , Norfloxacino/toxicidad , Plancton/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Plancton/clasificación , Especificidad de la Especie
20.
Sci Total Environ ; 711: 134679, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31810685

RESUMEN

Filter feeding activities link suspension feeders with their environment and underpin their impact on aquatic ecosystems. Despite their ecological and economic impacts, the functional response and size-selective capture of suspended particulates have not been well documented for the golden mussel Limnoperna fortunei. Here we demonstrated that golden mussels had a type I functional response, with an attack rate a = 0.085 and negligible handling time (h). Clearance rate ranged between 72.6 ± 27.0 and 305.5 ± 105.9 mL ind.-1h-1 (Mean ± S.E.), depending on food concentrations, which exhibited an inverse relationship with clearance rate. Presence of golden mussels suppressed chlorophyll a concentration in experimental mesocosms, the extent of which was dependent on mussel abundance. Concentration of suspended particles in experimental mesocosms experienced a sharp initial decline across all size categories (≤1->50 µm), though with increased final concentration of large particles (>25 µm), indicating packaging and egestion by golden mussels of fine particles (down to ≤1 µm). Capture efficiency of quantitatively-dominant suspended matter (≤1-50 µm) by golden mussels was inversely related to particle size. Animal abundance, particle size, and their interaction (abundance × particle size) determined the extent to which matter was removed from the water column. Presently L. fortunei occurs primarily in the southern end of the central route of South to North Water Diversion Project (China), but the species is spreading north; we anticipate that impacts associated with filtering of L. fortunei will correspond with local population abundance along this gradient.


Asunto(s)
Mytilidae , Animales , China , Clorofila A , Ecosistema , Agua Dulce
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA