Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Intervalo de año de publicación
1.
PLoS Pathog ; 9(9): e1003583, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24068923

RESUMEN

Lytic gammaherpesvirus (GHV) replication facilitates the establishment of lifelong latent infection, which places the infected host at risk for numerous cancers. As obligate intracellular parasites, GHVs must control and usurp cellular signaling pathways in order to successfully replicate, disseminate to stable latency reservoirs in the host, and prevent immune-mediated clearance. To facilitate a systems-level understanding of phosphorylation-dependent signaling events directed by GHVs during lytic replication, we utilized label-free quantitative mass spectrometry to interrogate the lytic replication cycle of murine gammaherpesvirus-68 (MHV68). Compared to controls, MHV68 infection regulated by 2-fold or greater ca. 86% of identified phosphopeptides - a regulatory scale not previously observed in phosphoproteomic evaluations of discrete signal-inducing stimuli. Network analyses demonstrated that the infection-associated induction or repression of specific cellular proteins globally altered the flow of information through the host phosphoprotein network, yielding major changes to functional protein clusters and ontologically associated proteins. A series of orthogonal bioinformatics analyses revealed that MAPK and CDK-related signaling events were overrepresented in the infection-associated phosphoproteome and identified 155 host proteins, such as the transcription factor c-Jun, as putative downstream targets. Importantly, functional tests of bioinformatics-based predictions confirmed ERK1/2 and CDK1/2 as kinases that facilitate MHV68 replication and also demonstrated the importance of c-Jun. Finally, a transposon-mutant virus screen identified the MHV68 cyclin D ortholog as a viral protein that contributes to the prominent MAPK/CDK signature of the infection-associated phosphoproteome. Together, these analyses enhance an understanding of how GHVs reorganize and usurp intracellular signaling networks to facilitate infection and replication.


Asunto(s)
Gammaherpesvirinae/fisiología , Interacciones Huésped-Patógeno , Modelos Biológicos , Fosfoproteínas/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo , Replicación Viral , Células 3T3 , Animales , Cromatografía Líquida de Alta Presión , Biología Computacional , Ciclina D/química , Ciclina D/genética , Ciclina D/metabolismo , Gammaherpesvirinae/genética , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virología , Sistema de Señalización de MAP Quinasas , Ratones , Mutación , Fosfoproteínas/química , Fosfoproteínas/genética , Proteoma/química , Proteoma/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas c-jun/química , Proteínas Proto-Oncogénicas c-jun/metabolismo , Espectrometría de Masas en Tándem , Proteínas Virales/química , Proteínas Virales/genética
2.
J Virol ; 86(24): 13253-62, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23015701

RESUMEN

Several studies have previously defined host-derived signaling events capable of driving lytic gammaherpesvirus replication or enhancing immediate-early viral gene expression. Yet signaling pathways that regulate later stages of the productive gammaherpesvirus replication cycle are still poorly defined. In this study, we utilized a mass spectrometric approach to identify c-Jun as an abundant cellular phosphoprotein present in late stages of lytic murine gammaherpesvirus 68 (MHV68) infection. Kinetically, c-Jun phosphorylation was enhanced as infection progressed, and this correlated with enhanced phosphorylation of the c-Jun amino-terminal kinases JNK1 and JNK2 and activation of AP-1 transcription. These events were dependent on progression beyond viral immediate-early gene expression, but not dependent on viral DNA replication. Both pharmacologic and dominant-negative blockade of JNK1/2 activity inhibited viral replication, and this correlated with inhibition of viral DNA synthesis and reduced viral gene expression. These data suggest a model in which MHV68 by necessity amplifies and usurps JNK/c-Jun signaling as infection progresses in order to facilitate late stages of the MHV68 lytic infection cycle.


Asunto(s)
Gammaherpesvirinae/fisiología , MAP Quinasa Quinasa 4/metabolismo , Transducción de Señal , Replicación Viral , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Espectrometría de Masas en Tándem , Proteínas Virales/química , Proteínas Virales/metabolismo
3.
Clin Lymphoma Myeloma Leuk ; 11(6): 490-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21889435

RESUMEN

INTRODUCTION: It was demonstrated that metallopanstimulin-1 (MPS-1, RPS27) inhibited the growth of tumors formed by head and neck squamous cell carcinoma cells and reduced paxillin gene expression. METHODS: The present study examined whether and how MPS-1 affects another type of cancer, multiple myeloma (CAG). Enhanced expression of MPS-1 dramatically inhibited CAG in vitro and in vivo. RESULTS: Overexpression of MPS-1 resulted in decreased fibroblast growth factor (FGF2) receptor 3 and impaired endogenous MAPK/ErK signaling. MAPK/ErK signaling was not stimulated by adding recombinant FGF2 to myeloma cells overexpressing MPS-1. CONCLUSIONS: These data suggest that MPS-1 suppresses CAG growth and that weakened FGF2 signaling may contribute to this effect.


Asunto(s)
Metaloproteínas/biosíntesis , Mieloma Múltiple/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas de Unión al ARN/biosíntesis , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Proteínas Ribosómicas/biosíntesis , Animales , Apoptosis/fisiología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Medios de Cultivo Condicionados , Factores de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Metaloproteínas/genética , Metaloproteínas/farmacología , Ratones , Ratones Desnudos , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Proteínas Nucleares/genética , Proteínas Nucleares/farmacología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/farmacología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/farmacología , Transducción de Señal , Transfección , Trasplante Heterólogo
4.
J Bone Miner Res ; 25(6): 1295-304, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20200931

RESUMEN

Tumor-stimulated bone resorption fuels tumor growth and marks a dramatic decline in the health and prognosis of breast cancer patients. Identifying mechanisms that mediate cross-talk between tumor and bone remains a key challenge. We previously demonstrated that breast cancer cells expressing high levels of heparanase exhibit enhanced shedding of the syndecan-1 proteoglycan. Moreover, when these heparanase-high cells are implanted in the mammary fat pad, they elevate bone resorption. In this study, conditioned medium from breast cancer cells expressing high levels of heparanase was shown to significantly stimulate human osteoclastogenesis in vitro (p < .05). The osteoclastogenic activity in the medium of heparanase-high cells was traced to the presence of syndecan-1, intact heparan sulfate chains, and heat-labile factor(s), including the chemokine interleukin 8 (IL-8). The enhanced osteoclastogenesis promoted by the heparanase-high cells results in a dramatic increase in bone resorption in vitro. In addition, the long bones of animals bearing heparanase-high tumors in the mammary fat pad had significantly higher numbers of osteoclasts compared with animals bearing tumors expressing low levels of heparanase (p < .05). Together these data suggest that syndecan-1 shed by tumor cells exerts biologic effects distal to the primary tumor and that it participates in driving osteoclastogenesis and the resulting bone destruction.


Asunto(s)
Huesos/metabolismo , Huesos/patología , Neoplasias de la Mama/metabolismo , Osteoclastos/patología , Osteogénesis , Sindecano-1/metabolismo , Animales , Resorción Ósea/metabolismo , Resorción Ósea/patología , Huesos/efectos de los fármacos , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Medios de Cultivo Condicionados/farmacología , Femenino , Glucuronidasa/metabolismo , Humanos , Interleucina-8/metabolismo , Ratones , Ratones SCID , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos
5.
J Biol Chem ; 284(38): 26085-95, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19596856

RESUMEN

Myeloma tumors are characterized by high expression of syndecan-1 (CD138), a heparan sulfate proteoglycan present on the myeloma cell surface and shed into the tumor microenvironment. High levels of shed syndecan-1 in the serum of patients are an indicator of poor prognosis, and numerous studies have implicated syndecan-1 in promoting the growth and progression of this cancer. In the present study we directly addressed the role of syndecan-1 in myeloma by stable knockdown of its expression using RNA interference. Knockdown cells that were negative for syndecan-1 expression became apoptotic and failed to grow in vitro. Knockdown cells expressing syndecan-1 at approximately 28% or approximately 14% of normal levels survived and grew well in vitro but formed fewer and much smaller subcutaneous tumors in mice compared with tumors formed by cells expressing normal levels of syndecan-1. When injected intravenously into mice (experimental metastasis model), knockdown cells formed very few metastases as compared with controls. This indicates that syndecan-1 may be required for the establishment of multi-focal metastasis, a hallmark of this cancer. One mechanism of syndecan-1 action occurs via stimulation of tumor angiogenesis because tumors formed by knockdown cells exhibited diminished levels of vascular endothelial growth factor and impaired development of blood vessels. Together, these data indicate that the effects of syndecan-1 on myeloma survival, growth, and dissemination are due, at least in part, to its positive regulation of tumor-host interactions that generate an environment capable of sustaining robust tumor growth.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Melanoma/metabolismo , Proteínas de Neoplasias/biosíntesis , Neovascularización Patológica/metabolismo , Sindecano-1/biosíntesis , Animales , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Melanoma/genética , Melanoma/patología , Ratones , Ratones SCID , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Interferencia de ARN , Sindecano-1/genética
6.
Blood ; 110(6): 2041-8, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17536013

RESUMEN

The heparan sulfate proteoglycan syndecan-1 is expressed by myeloma cells and shed into the myeloma microenvironment. High levels of shed syndecan-1 in myeloma patient sera correlate with poor prognosis and studies in animal models indicate that shed syndecan-1 is a potent stimulator of myeloma tumor growth and metastasis. Overexpression of extracellular endosulfatases, enzymes which remove 6-O sulfate groups from heparan sulfate chains, diminishes myeloma tumor growth in vivo. Together, these findings identify syndecan-1 as a potential target for myeloma therapy. Here, 3 different strategies were tested in animal models of myeloma with the following results: (1) treatment with bacterial heparinase III, an enzyme that degrades heparan sulfate chains, dramatically inhibited the growth of primary tumors in the human severe combined immunodeficient (SCID-hu) model of myeloma; (2) treatment with an inhibitor of human heparanase, an enzyme that synergizes with syndecan-1 in promoting myeloma progression, blocked the growth of myeloma in vivo; and (3) knockdown of syndecan-1 expression by RNAi diminished and delayed myeloma tumor development in vivo. These results confirm the importance of syndecan-1 in myeloma pathobiology and provide strong evidence that disruption of the normal function or amount of syndecan-1 or its heparan sulfate chains is a valid therapeutic approach for this cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteoglicanos de Heparán Sulfato/antagonistas & inhibidores , Mieloma Múltiple/prevención & control , Neoplasias Experimentales/prevención & control , Sindecano-1/metabolismo , Animales , Médula Ósea/metabolismo , Huesos/citología , Huesos/metabolismo , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Humanos , Masculino , Ratones , Ratones SCID , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , ARN Interferente Pequeño/farmacología , Sindecano-1/antagonistas & inhibidores , Sindecano-1/genética , Tomografía Computarizada por Rayos X , Células Tumorales Cultivadas
7.
J Biol Chem ; 282(18): 13326-33, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17347152

RESUMEN

When shed from the cell surface, the heparan sulfate proteoglycan syndecan-1 can facilitate the growth, angiogenesis, and metastasis of tumors. Here we report that tumor cell expression of heparanase, an enzyme known to be a potent promoter of tumor progression and metastasis, regulates both the level and location of syndecan-1 within the tumor microenvironment by enhancing its synthesis and subsequent shedding from the tumor cell surface. Heparanase regulation of syndecan-1 is detected in both human myeloma and breast cancer cell lines. This regulation requires the presence of active enzyme, because mutated forms of heparanase lacking heparan sulfate-degrading activity failed to influence syndecan-1 expression or shedding. Removal of heparan sulfate from the cell surface using bacterial heparitinase dramatically accelerated syndecan-1 shedding, suggesting that the effects of heparanase on syndecan-1 expression by tumor cells may be due, at least in part, to enzymatic removal or reduction in the size of heparan sulfate chains. Animals bearing tumors formed from cells expressing high levels of heparanase or animals transgenic for heparanase expression exhibited elevated levels of serum syndecan-1 as compared with controls, indicating that heparanase regulation of syndecan-1 expression and shedding can occur in vivo and impact cancer progression and perhaps other pathological states. These results reveal a new mechanism by which heparanase promotes an aggressive tumor phenotype and suggests that heparanase and syndecan-1 act synergistically to fine tune the tumor microenvironment and ensure robust tumor growth.


Asunto(s)
Neoplasias de la Mama/enzimología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glucuronidasa/biosíntesis , Mieloma Múltiple/enzimología , Neovascularización Patológica/enzimología , Sindecano-1/metabolismo , Animales , Proteínas Bacterianas/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Regulación Enzimológica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Glucuronidasa/genética , Humanos , Ratones , Ratones Transgénicos , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Metástasis de la Neoplasia , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Polisacárido Liasas/farmacología
8.
Arch. argent. pediatr ; 104(3): 265-268, jun. 2006. tab
Artículo en Español | LILACS | ID: lil-434883

RESUMEN

RESUMEN Introducción. El estreptococo beta hemolítico del grupo A está implicado en una variedad de procesos infecciosos, entre los que se incluye el shock tóxico. Es una de las complicaciones asociadas a la varicela.Cuadro clínico. Paciente de 2 años y 6 meses que presentó varicela 30 días previos al cuadro actual.Catorce horas antes del ingreso consultó en Emergencias por fiebre, dolor e impotencia funcional de miembro inferior izquierdo. Estaba en buen estado,afebril; presentaba motilidad activa conservada y limitada por dolor en rodilla izquierda. Se realizaron:radiografía de cadera normal, ecografías de cadera y rodillas normales. Se otorgó el egreso luego de descartar osteoartritis. Posteriormente consultó en otra institución, donde se observó similar condición clínica.Ingresó en emergencias en shock. Se realizó intubación endotraqueal, colocación de antibióticos EV,volumen e inotrópicos. La paciente falleció sin respuesta al tratamiento. En dos hemocultivos desarrolló estreptococo beta hemolítico del grupo A


Asunto(s)
Preescolar , Streptococcus , Choque Séptico , Choque Séptico/mortalidad , Choque Séptico , Varicela/complicaciones , Varicela/diagnóstico , Varicela/mortalidad
9.
J Biol Chem ; 280(48): 40066-73, 2005 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-16192265

RESUMEN

To participate as co-receptor in growth factor signaling, heparan sulfate must have specific structural features. Recent studies show that when the levels of 6-O-sulfation of heparan sulfate are diminished by the activity of extracellular heparan sulfate 6-O-endosulfatases (Sulfs), fibroblast growth factor 2-, heparin binding epidermal growth factor-, and hepatocyte growth factor-mediated signaling are attenuated. This represents a novel mechanism for regulating cell growth, particularly within the tumor microenvironment where the Sulfs are known to be misregulated. To directly test the role of Sulfs in tumor growth control in vivo, a human myeloma cell line was transfected with cDNAs encoding either of the two known human endosulfatases, HSulf-1 or HSulf-2. When implanted into severe combined immunodeficient (SCID) mice, the growth of these tumors was dramatically reduced on the order of 5- to 10-fold as compared with controls. In addition to an inhibition of tumor growth, these studies revealed the following. (i) HSulf-1 and HSulf-2 have similar functions in vivo. (ii) The extracellular activity of Sulfs is restricted to the local tumor cell surface. (iii) The Sulfs promote a marked increase in extracellular matrix deposition within tumors that may, along with attenuated growth factor signaling, contribute to the reduction in tumor growth. These findings demonstrate that dynamic regulation of heparan sulfate structure by Sulfs present within the tumor microenvironment can have a dramatic impact on the growth and progression of malignant cells in vivo.


Asunto(s)
Mieloma Múltiple/patología , Neoplasias/patología , Sulfotransferasas/fisiología , Animales , Western Blotting , Línea Celular Tumoral , Proliferación Celular , ADN Complementario/metabolismo , Disacáridos/química , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Citometría de Flujo , Sustancias de Crecimiento/metabolismo , Proteoglicanos de Heparán Sulfato/química , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones SCID , Trasplante de Neoplasias , Neoplasias/metabolismo , Polisacárido Liasas/metabolismo , Unión Proteica , Transducción de Señal , Sulfatasas , Factores de Tiempo , Transfección
10.
J Cell Biochem ; 96(5): 897-905, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16149080

RESUMEN

Heparan sulfate proteoglycans (HSPGs), via their interactions with numerous effector molecules such as FGF-2, IL-8, and VEGF, regulate the biological activity of cells by acting as co-receptors that promote signaling. The extent and nature of their role as co-receptors is often misregulated in cancer as manifested by alterations in HSPG structure and expression level. This misregulation of HSPGs can aid in promoting the malignant phenotype. In addition to expression-related changes in HSPGs, recent discoveries indicate that HSPGs localized within the tumor microenvironment can be attacked by enzymes that alter proteoglycan structure resulting in dramatic effects on tumor growth and metastasis. This review focuses on remodeling of HSPGs by three distinct mechanisms that occur in vivo; (i) shedding of proteoglycan extracellular domains from cell surfaces, (ii) fragmentation of heparan sulfate chains by heparanase, and (iii) removal of sulfates from the 6-O position of heparan sulfate chains by extracellular sulfatases. Assessing or monitoring the remodeling of HSPGs has important implications for tumor diagnosis and patient prognosis while therapeutic manipulation of the remodeling process represents an exciting new possibility for treating cancer.


Asunto(s)
Antineoplásicos/farmacología , Regulación de la Expresión Génica , Proteoglicanos de Heparán Sulfato/química , Neoplasias/metabolismo , Neoplasias/patología , Animales , Membrana Celular/metabolismo , Proliferación Celular , Matriz Extracelular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Humanos , Interleucina-8/metabolismo , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Metástasis de la Neoplasia , Neoplasias/terapia , Fenotipo , Estructura Terciaria de Proteína , Proteoglicanos/metabolismo , Transducción de Señal , Sindecanos , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Cancer Res ; 65(13): 5778-84, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15994953

RESUMEN

Heparanase is an enzyme that cleaves heparan sulfate and through this activity promotes tumor growth, angiogenesis, invasion, and metastasis in several tumor types. In human breast cancer patients, heparanase expression is associated with sentinel lymph node metastases. However, the precise role of heparanase in the malignant progression of breast cancer is unknown. To examine this, a variant of MDA-MB-231 cells was transfected with the cDNA for human heparanase (HPSE cells) or with vector alone as a control (NEO cells). Transfection produced a 6-fold increase in heparanase activity in HPSE cells relative to NEO cells. When injected into the mammary fat pads of severe combined immunodeficient mice, the tumors formed by HPSE cells initially grow significantly faster than the tumors formed by NEO cells. The rapid growth is due in part to increased angiogenesis, as microvessel densities are substantially elevated in primary HPSE tumors compared with NEO tumors. Although metastases to bones are not detected, surprisingly vigorous bone resorption is stimulated in animals bearing tumors formed by the HPSE cells. These animals have high serum levels of the C-telopeptide derived from type I collagen as well as significant elevation of the active form of tartrate-resistant acid phosphatase (TRAP)-5b. In contrast, in animals having a high tumor burden of Neo cells, the serum levels of C-telopeptide and TRAP-5b never increase above the levels found before tumor injection. Consistent with these findings, histologic analysis for TRAP-expressing cells reveals extensive osteoclastogenesis in animals harboring HPSE tumors. In vitro osteoclastogenesis assays show that the osteoclastogenic activity of HPSE cell conditioned medium is significantly enhanced beyond that of NEO conditioned medium. This confirms that a soluble factor or factors that stimulate osteoclastogenesis are specifically produced when heparanase expression is elevated. These factors exert a distal effect resulting in resorption of bone and the accompanying enrichment of the bone microenvironment with growth-promoting factors that may nurture the growth of metastatic tumor cells. This novel role for heparanase as a promoter of osteolysis before tumor metastasis suggests that therapies designed to block heparanase function may disrupt the early progression of bone-homing tumors.


Asunto(s)
Adenocarcinoma/enzimología , Resorción Ósea/enzimología , Neoplasias de la Mama/enzimología , Glucuronidasa/biosíntesis , Adenocarcinoma/patología , Adenocarcinoma/secundario , Animales , Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones SCID , Trasplante de Neoplasias , Trasplante Heterólogo
12.
Blood ; 105(3): 1303-9, 2005 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-15471949

RESUMEN

Although widespread skeletal dissemination is a critical step in the progression of myeloma, little is known regarding mechanisms that control metastasis of this cancer. Heparanase-1 (heparanase), an enzyme that cleaves heparan sulfate chains, is expressed at high levels in some patients with myeloma and promotes metastasis of some tumor types (eg, breast, lymphoma). Using a severe combined immunodeficient (SCID) mouse model, we demonstrate that enhanced expression of heparanase by myeloma cells dramatically up-regulates their spontaneous metastasis to bone. This occurs from primary tumors growing subcutaneously and also from primary tumors established in bone. Interestingly, tumors formed by subcutaneous injection of cells metastasize not only to bone, but also to other sites including spleen, liver, and lung. In contrast, tumors formed by injection of cells directly into bone exhibit a restricted pattern of metastasis that includes dissemination of tumor to other bones but not to extramedullary sites. In addition, expression of heparanase by myeloma cells (1) accelerates the initial growth of the primary tumor, (2) increases whole-body tumor burden as compared with controls, and (3) enhances both the number and size of microvessels within the primary tumor. These studies describe a novel experimental animal model for examining the spontaneous metastasis of bone-homing tumors and indicate that heparanase is a critical determinant of myeloma dissemination and growth in vivo.


Asunto(s)
Huesos/patología , División Celular/fisiología , Glucuronidasa/metabolismo , Mieloma Múltiple/patología , Metástasis de la Neoplasia/patología , ADN Complementario/análisis , Glucuronidasa/genética , Humanos , Proteínas Recombinantes , Transfección , Células Tumorales Cultivadas
13.
Cancer Res ; 63(24): 8749-56, 2003 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-14695190

RESUMEN

Heparanase is an enzyme that cleaves heparan sulfate chains of proteoglycans, and its expression has been associated with increased growth, metastasis, and angiogenesis of some tumors. Because myeloma tumor cells express high levels of the syndecan-1 heparan sulfate proteoglycan and because these tumors grow as highly vascularized aggregates within the bone marrow, we analyzed the activity, expression, and function of heparanase in myeloma patients. Analysis of heparanase activity in the plasma isolated from bone marrow biopsies of 100 patients reveals 86 positive for heparanase activity and 14 negative. The bone marrow samples can be further divided into three categories of heparanase activity, high activity (42 patients), low activity (44 patients), and negative (14 patients). In contrast to the bone marrow plasma, levels of heparanase activity in peripheral blood plasma of 29 myeloma patients were either negative or low, suggesting that in multiple myeloma, heparanase functions in the local microenvironment of the bone marrow and its activity is not significantly elevated systemically. Immunohistochemistry reveals that patients with high levels of heparanase activity often have tumor cells with intense staining for the enzyme. Interestingly, a marked heterogeneity among tumor cells was noted, with clusters of heavily stained cells surrounded by cells with weak or negative staining for heparanase. Analysis of microvessel density reveals a strikingly higher concentration of vessels in patients with high heparanase activity (78.96 vessels/mm(2)) as compared with patients negative for heparanase activity (25.03 vessels/mm(2)). When human myeloma cells transfected with the cDNA for heparanase are implanted in severe combined immunodeficient (SCID) mice, the resulting tumors exhibited a significantly higher microvessel density than did tumors established with control cells. Thus, expression of heparanase appears to play a direct role in enhancing microvessel density in these myeloma tumors. Because heparanase is known to stimulate angiogenesis, and because high microvessel density is associated with poor prognosis in myeloma, we conclude that heparanase expression likely plays an important role in regulating the growth and progression of myeloma, and that therapies designed to block heparanase activity may aid in controlling this cancer.


Asunto(s)
Glucuronidasa/metabolismo , Mieloma Múltiple/irrigación sanguínea , Mieloma Múltiple/enzimología , Animales , Médula Ósea/enzimología , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , Ratones , Ratones SCID , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Neovascularización Patológica/enzimología , Neovascularización Patológica/patología , Proteoglicanos/biosíntesis , Proteoglicanos/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Sindecano-1 , Sindecanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...