RESUMEN
Recently, there has been significant exploration into the utilization of food by-products as natural reservoirs of bioactive substances, particularly in the creation of functional foods naturally enriched with antioxidants. Citrus peels represent a viable option for formulating enhanced olive oils that contribute to a healthier diet, due to their bioactive compound content. This study aimed to (i) ascertain the compositional characteristics of Citrus reticulata olive oil (CrOO) and (ii) assess its nutraceutical properties in rats with metabolic disorder induced by 3 weeks of feeding with a high-fat diet (HFD). The results showed a peculiar phytochemical composition, thanks to the contribution of citrus peels, which are excellent bio-products. In addition, it demonstrated HFD-induced weight gain (18 ± 2% for HFD vs. 13 ± 0.9% for CrOO) and showed protective effects on fasting blood glucose levels (90.2 ± 3.8 mg/dL for HFD vs. 72.3 ± 2.6 for CrOO). Furthermore, a reduction in cardiovascular risk (total cholesterol/HDL cholesterol = 5.0 ± 0.3 for HFD vs. 3.8 ± 0.3 for CrOO) and an improvement in myocardial tissue function were observed, as well as a significant reduction in inflammatory mediators such as iNOS, COX-2, and mPGES-1 in aortic vessel tissues, thus preserving endothelial function at the vascular level.
Asunto(s)
Citrus , Dieta Alta en Grasa , Suplementos Dietéticos , Modelos Animales de Enfermedad , Aceite de Oliva , Animales , Aceite de Oliva/farmacología , Citrus/química , Masculino , Ratas , Ratas Wistar , Sistema Cardiovascular/efectos de los fármacos , Enfermedades Metabólicas , Glucemia/metabolismo , Antioxidantes/farmacología , Aumento de Peso/efectos de los fármacos , Enfermedades Cardiovasculares/prevención & controlRESUMEN
Background: Understanding the shelf life of wine is complex and involves factors such as aroma preservation, flavour development and market acceptance. Ageing potential, crucial for flavour complexity, exposes wine to oxidation, influenced by oxygen, temperature and light, with an impact on quality. This type of oxidation is non-enzymatic, is catalyzed by metal ions and alters colour and flavour. Scope and approach: This review examines the dynamics of wine preservation, focusing on oxidation and the impact of closure. Corks allow controlled oxygen transfer, while screw caps offer a nearly hermetic closure. Oxygen transfer rates vary, with natural corks having fluctuating rates and synthetic corks causing over-exposure. Additives such as sulphur dioxide and alternative substitute such as lysozyme and ascorbic acid are examined for their role in preventing oxidation and ensuring microbiological stability. Key findings and conclusions: Closure choice significantly affects wine preservation. Balancing oxygen exposure, temperature, and light is vital. Effective management, including the strategic use of preservatives and additives, is crucial for maintaining quality and extending shelf life. This review underscores the delicate equilibrium necessary for preserving wine quality from production to consumption.
RESUMEN
Virgin olive oil (VOO) is a globally esteemed product renowned for its chemical composition, nutritional value, and health benefits. Consumers seeking natural, nutritious, and healthy foods increasingly favor VOO. The optimization of the extraction system ensures the production of high-quality VOO with abundant antioxidant compounds that naturally protect it from degradation. Proper storage is crucial in maintaining the quality of VOO, prompting the exploration of novel extraction and preservation techniques. Factors such as light, temperature, and oxygen greatly influence the degradation process, resulting in reduced levels of natural antioxidants like polyphenols. Undesirable by-products and non-aromatic compounds may be formed, making the oil unacceptable over time. On the basis of all this consideration, this study aimed to evaluate the synergic use of two different gases (CO2 and argon) during the malaxation phase to limit radical development and delay lipid autoxidation. Additionally, unconventional preservation systems, namely argon headspace, shellac, and bottle in bag, were assessed over a period of 150 days. The results evidenced that the use of CO2 and argon during the malaxation process resulted in an improvement in the oil quality compared to the one obtained with the traditional system. However, in traditional oils, the alternative packaging systems determined interesting outcomes as they were able to positively affect different parameters, while the packaging effect was more mitigated in the test oils.
RESUMEN
The aging process of wine is influenced by various factors, including the presence of oxygen, the temperature, and the storage conditions. While oxygen can have both positive and negative effects on wine quality, temperature fluctuations during storage can impact its chemical composition. This study has investigated the aging of Merlot and Sangiovese wines under traditional cellar conditions and underwater, exploring the influence of storage parameters on their chemical evolution. Analyzing parameters such as temperature, pressure, and chemical composition, the research revealed subtle but significant changes in the wines over time. Both wines showed a gradual reduction in total phenols, anthocyanins, non-flavonoid compounds, and total sulfur dioxide, irrespective of the storage conditions. Preliminary findings suggested that aging wine underwater does not induce significant alterations in its fundamental characteristics compared to traditional cellar aging. These results contribute to a deeper understanding of wine aging processes and highlight the importance of storage conditions in preserving wine quality. Further research is needed to fully elucidate the complexities of underwater aging and its broader implications for wine production.
RESUMEN
The complex dynamics between oxygen exposure, sulphur dioxide (SO2) utilization, and wine quality are of the utmost importance in wine sector, and this study aims to explore their fine balance in winemaking. As a common additive, SO2 works as an antiseptic and antioxidant. However, its excessive use has raised health concerns. Regulatory guidelines, including Council Regulation (EC) N° 1493/1999 and Commission Regulation (EC) No 1622/2000, dictate SO2 concentrations in wines. The increasing demand for natural preservatives is driving the search for alternatives, with natural plant extracts, rich in phenolic compounds, emerging as promising substitutes. In this context, Bioma Company has proposed alternative additives deriving from vineyard waste to replace SO2 during winemaking. Thus, the aim of the present work was to compare the compositional characteristics between the product obtained with the alternative vinification and the traditional one during the winemaking, as well as the aroma compositions of the final wines. After a year of experimentation, the wines produced with Bioma products showed compositional characteristics comparable to their traditional counterparts. Notably, these wines comply with current legislation, with significantly reduced total sulphur content, allowing their designation as "without added sulphites". Bioma products emerge as potential catalysts for sustainable and health-conscious winemaking practices, reshaping the landscape of the industry.
RESUMEN
The use of by-products as functional ingredients for bread recipes may open up new horizons in terms of product innovation to increase nutraceutical characteristics and/or shelf-life. In this research, the ability of residual products from important food chains (Citrus and wine) to influence the water binding capacity of dough and bread was investigated in order to create industrial breads of high quality with prolonged shelf-life in the absence of any chemical additives (e.g., ethanol, sorbic acid, and propionic acid). The product under study is the 'Pan Bauletto bianco con olio EVO' (white bakery bread with EVO oil), an 'industrial bread' type usually treated with ethanol before being marketed, aiming to prolong its short shelf-life. The effect of the addition of different amounts of pectin (Citrus supply chain) and grape pomace (wine supply chain), in combination or not, has shown promising results from both a technological point of view and the increasing shelf-life, allowing to obtain products with high nutraceutical value and interesting properties.
RESUMEN
Generally, olive oil possesses natural protection against oxidation due to antioxidant compounds such as phenols and tocopherols. However, in the case of refined olive oil, the refining process unavoidably reduces the presence of these compounds. Considering these considerations, the objective of this study was to address the issues related to the "tightness" of the cap used for packaging oil in SALOV, aiming to extend the product's shelf life. The oil under investigation was packaged in 250 mL transparent glass bottles, each filled with either argon or air. Subsequently, the samples were divided into three groups: one group sealed with a conventional screw cap, another covered with a special protective bag, and a third one sealed with a wax cover directly on the cap. The storage period varied, during which the atmospheric conditions were monitored daily through both destructive and non-destructive analyses. The preliminary results indicate that alternative preservation techniques, such as the use of argon, sealing wax, and protective bags, can effectively enhance the shelf life of the oil and maintain its quality (reduce oxidation, preserve phenolic compounds, and reduce the degradation of pigments). Further research and development in this area could lead to the production of high-quality extra virgin olive oils with extended shelf life and improved sensory and nutritional properties.
RESUMEN
The shelf-life of bread is influenced by flour components, such as starch, composed of amylose and amylopectin. The aim was to test the effect of different balances of N (45, 90, 135 kg/ha) and P (48, 96 kg/ha) fertilizers on the flour characteristics and consequently the shelf-life of PDO Tuscan bread, stored in different modified atmosphere packaging (Ar, N2, Air). The amylose and phytochemical compounds were increased by N and decreased by the addition of P, but excessive doses of N (135 kg/ha) had a negative effect on flour quality. In the bread, the study highlighted the tendency of N2 and Ar, as storage filler gases, to reduce water loss, slow down the staling process, and prolong shelf-life. However, the most significant influence on shelf-life was related to the different fertilizations of wheat. In fact, when N was present in equal dose to P (90/96 or 45/48 kg/ha) or slightly higher (90/48 kg/ha), the bread tended to last longer over time. Instead, when these ratios were unbalanced in favor of N (135/48 or 135/96 kg/ha) and in favor of P (45/96 kg/ha), the shelf-life decreased considerably.
RESUMEN
When bottled wine is opened, a completely different scenario occurs that can accelerate the oxidation of the product. This is called the secondary shelf life (SSL), which is generally shorter and less predictable than the primary shelf life (PSL). In this context, the research aim was to evaluate the changes that occur in two types of red wine during two tests to evaluate the secondary shelf life as a function of the packaging systems. The variation of Total SO2 and Free SO2 and the other chemical parameters (polyphenols, anthocyanins, proanthocyanidins, color, and volatile acidity) were used to assess the oxidation rate of the packaging samples after opening during the SSL. In both tests and for the two types of stored red wine, the polymeric cap showed the best results. The other types of closure (screw cap, natural cork, crow cap, and Tetra Brik) showed a negative trend and a reduced SSL for both red wines. Finally, the sensory results confirmed that with the polymeric cap, the SSL increases considerably compared to other capping systems. These results may be due to the technical characteristics of polymeric materials, which tend to vary slightly in shape after repeated usage.
RESUMEN
"Avanzi 3-Grano 23" (G23) is an old variety of Triticum aestivum from the mountain areas of Lunigiana (north Tuscany, Italy), where traditional farming communities have contributed to its success and on-farm conservation. G23 flour, traditionally used for typical food products, is characterized by particular nutritional and sensory traits but has technological properties which limit its suitability for breadmaking. The aim of this work was to evaluate how to promote the use of G23 through the optimization of bread formulation by leveraging both flour blending and the leavening system. During the preliminary test, three different mixes of G23 flour and a strong flour (C) were tested in terms of their leavening power as a function of leavening agent (baker's yeast or sourdough). The selected M2 flour, composed of G23:C (1:1 w/w), was used for further breadmaking trials and 100% C flour was utilized as a control. The sourdough bread obtained with the M2 flour (SB-M2) showed an improved sensory profile compared with the related control (SB-C). Furthermore, SB-M2 exhibited the best aromatic (high content in aldehydes, pyrazines and carboxylic acids) and phytochemical profile (total polyphenols and flavonoids content and antioxidant activity). In contrast, the use of baker's yeast, although optimal from the point of view of breadmaking, did not result in the same levels of aromatic complexity because it tends to standardize the product without valorizing the sensory and nutritional qualities of the flour. In conclusion, in the experimental conditions adopted, this old wheat variety appears to be suitable for the production of sourdough bakery products.
RESUMEN
Meat production has a higher economic and ecological impact than other commodities. The reduction in meat loss and waste throughout the whole supply chain is a demanding challenge. In recent years, the interest in the food-grade polysaccharide chitosan (CH) and essential oils (EOs) employed as allies in meat protection has increased. In this work, we selected five EOs obtained from plants traditionally used as spices, and after their chemical characterisation, a trained panel of expert sensorial analysts determined that, among them, Laurus nobilis (Lauraceae) and Piper nigrum (Piperaceae) EOs were the most suitable to season meat. Therefore, the effect of CH, the L. nobilis and P. nigrum EOs, and EOs-enriched CH solutions on meat was tested to assess how they deter the oviposition behaviour of the blowfly Calliphora vomitoria (Diptera: Calliphoridae) and against water loss, lipid peroxidation, and colour changes. All the applied treatments, compared to the control, did not accelerate meat dehydration but increased colour lightness, an attractive feature for consumers, and discouraged the blowfly's oviposition. In particular, the P. nigrum EO-enriched CH was the most active in repelling C. vomitoria without negatively affecting the organoleptic qualities and shelf-life of meat.
RESUMEN
The short shelf-life of PDO Tuscan bread limits its distribution to markets close to the production area, affecting its commercial success and the economic return by supply chain operators. While the application of MAP to store bread is widely accepted, the suitability of this technique to extend the shelf life of the PDO Tuscan bread is still to be explored. Furthermore, to the best of our knowledge no data are available in the literature about the use of argon as filling gas neither in pure atmosphere nor in combination with CO2. In this context, the aim of this study was to evaluate the effect of different modified packaging atmospheres on the shelf-life of sourdough bread. Slices of bread were stored individually in plastic bags at 23 °C in five different atmospheres (Ar (100%), N2 (100%), CO2 (100%), Mix CO2/N2 (70% CO2, 30% N2), Mix CO2/Ar (70% CO2, 30% Ar)), and Air was selected as a control. To select the best storage conditions, both chemical-physical, rheological, and organoleptic features were evaluated. Results showed that pure gases (CO2, N2, Ar) displayed good qualities as storage atmospheres compared to Air. In contrast, both Mix CO2/N2 and Mix CO2/Ar were the best in slowing down the staling process, thus doubling the shelf-life of bread, compared to other atmospheres. In conclusion, argon, as a preservation atmosphere, seems to be the best solution to extend the shelf-life of PDO Tuscan bread.
RESUMEN
Among the various existing techniques, enzymatic degumming represents a process that is establishing itself as a valid alternative to the more classic chemical processes. Moreover, vegetable oils of various origins have been gaining more consideration as sustainable and affordable protectants for cereals and pulses against the attack of several insect pests. Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) is one of the key pests of cereal crops in the field and in stored and processed cereal products. Based on these highlighted issues, the overall aim of this research was twofold: (i) firstly, the effectiveness of the enzymatic degumming process was evaluated through the use of three different enzymes in order to verify the possible industrial application within the SALOV company as an alternative to the conventional chemical process; (ii) in a second phase, the possible use of the innovative refined oils was explored for sustainable stored grain protection towards S. zeamais. The results obtained confirm the strong possibility of applying the enzymatic process, which is innovative and, in a chemical way, more sustainable than the classical one. Regarding the toxicity towards S. zeamais, the crude peanut oil and the chemically refined peanut oil had lower LC50 values (1.836 and 1.372 g kg-1, respectively) than the oils rectified through enzymatic degumming (LC50 from 2.453 to 4.076 g kg-1), and, therefore, they can be suggested as sustainable stored grain protectants.
RESUMEN
The Mediterranean diet has, among its cornerstones, the use of olive oil for its nutraceutical and organoleptic properties. Despite the numerous merits, olive-oil mill wastewater (OMWW), which is generated by the olive-oil extraction process, is one of the most serious environmental pollutants in the Mediterranean countries. The polluting potential of OMWW is due to its high content of tannins, polyphenols, polyalcohols, pectins and lipids. In order to close the recovery cycle of a fortified citrus olive oils previously developed, we tested the ability of five microalgae of the Chlorella group (SEC_LI_ChL_1, CL_Sc, CL_Ch, FB and Idr) in lowering the percentage of total phenolic compounds in vegetation water. This was obtained with three different extraction processes (conventional, and lemon and orange peels) at three concentrations each (10%, 25% and 50%). The results showed that strains Idr, FB and CL_Sc from the Lake Massaciuccoli can tolerate vegetation water from conventional and lemon peel extractions up to 25%; these strains can also reduce the phenolic compounds within the tests. The application of microalgae for OMWW treatment represents an interesting opportunity as well as an eco-friendly low-cost solution to be developed within companies as a full-scale approach, which could be applied to obtain a fortified microalgal biomass to be employed in nutraceutical fields.
RESUMEN
The recent growing interest in lactose intolerance has resulted in the proliferation of lactose-free products by food manufacturing companies. Since updated papers about lactose and its uses are missing, the main purpose of this review is to investigate this sugar comprehensively. Firstly, its chemical and physical characteristics were studied, following its employment in the food and drug industries. The positive and negative health-related effects of lactose are reported, focusing on the condition of lactose intolerance, for which an adequate lactose-free diet has to be followed to avoid symptoms that impairs quality of life. Considering that EU legislation on lactose-free product labelling is still controversial, suitable options for producing and identifying lactose-free products are suggested, in order to meet lactose-intolerant people's needs.
RESUMEN
Winemaking variables and techniques are known to affect the composition of wines. To obtain a rapid and safe fermentation course, with a reduced risk of proliferation of unwanted microbial species, frequent recourse is made to the use of selected microorganisms, which can greatly simplify the complex management of the fermentation process. In particular, selected strains of lactic acid bacteria are used, which are much more sensitive than yeasts to the operating conditions of the medium. In this regard, the overall aim of this research was to verify whether the early inoculation of homolactic acid bacteria for hexoses (Lactobacillus plantarum) carried out after 24 h, compared with that of saccharomycetes operating alcoholic fermentation, could be advantageous compared with a traditional innoculation with a different heterolactic bacterial strain for hexoses (Oenococcus oeni) operated at the end of alcoholic fermentation. The grape variety chosen was Sangiovese, the protagonist of Tuscan oenology. The evaluation focused on different aspects such as the management of winery operations, and the quality and longevity of the product; was carried out in all phases of winemaking; and analysed both from a chemical and sensory point of view.
RESUMEN
Due to the greenhouse gas increase, grapes are often exposed to high temperatures in several growing areas especially during the final developmental stages, and this is particularly true when early ripening cultivars are harvested. This may cause undesirable effects on berry metabolism and composition and wine quality, particularly concerning the aroma profile. Harvesting at night or keeping the harvested grapes in cold rooms before vinification are empirical protocols applied in specific viticultural areas. To study the effects of decreasing berry temperature after harvest, white-skinned berries (cv Vermentino) were maintained at 4 or 10°C for 24 or 48 h before processing (pre-cooling). Control grapes were kept at 22°C. Grapes cooled at 10°C for 24 and 48 h resulted richer in polyphenols and showed a significant up-regulation of genes involved in polyphenols biosynthesis (i.e., VvPAL, VvSTS2, and VvFLS1). Similar behavior was observed in samples kept at 4°C for 48 h. Pre-cooling induced specific changes in the volatile organic compound (VOC) profiles. In particular, higher amounts of a specific subcategory of terpenes, namely sesquiterpenes, were detected in cooled samples. The induction of the expression of key genes involved in terpenoids biosynthesis (VvHDR, VvDX3, VvTER, VvGT14) was detected in cooled grapes, with variable effects depending on temperature and treatment duration. In both cooled samples, the evolution of alcoholic fermentation followed a regular trend but ended earlier. Higher phenolic content was detected in wines obtained from the 10°C-treated grapes. Higher residual concentration of malic acid at the end of fermentation was detected in wine samples from grapes pre-cooled at 4°C. Sesquiterpenes also showed a general increase in wines from cooled grapes, especially after pre-cooling at 10°C for 48 h. Different sensory profiles characterized the wine samples, with the best scores in terms of general pleasantness obtained by the wine produced from grapes pre-cooled at 4°C for 24 h. These results demonstrate that pre-cooling harvested grapes induces specific effect on the VOC profile and other quality parameters of Vermentino wine, and this appears to be the result of specific metabolic and compositional changes occurring in the berries.
RESUMEN
Ozone is widely used in the agri-food and food processing industries mainly as a sanitizing agent. However, it has recently become clear that ozone exposition leads to another important benefit: in living tissues, the induced-oxidative stress triggers the antioxidant response, and, therefore, it enhances the production of antioxidant and stress-related secondary metabolites. As such, ozone can be considered an abiotic elicitor. The goal of the present review was to critically summarize knowledge about the possibility of improving bioactive compounds and, consequently, the health-related properties of grapes and wine, by using ozone. The greatest interest has been given not only to the pre- and post-harvest treatment of table and wine grapes, but also to the explanation of the mechanisms involved in the ozone-related response and the main secondary metabolites biosynthetic pathways. From the literature available, it is clear that the effect of ozone treatment on health-related properties and secondary metabolites accumulation depends on many factors, such as the cultivar, but also the form (water or gaseous), doses, and application method of ozone. Most of the published papers report an increase in antioxidant compounds (e.g., polyphenols) and stress-related volatiles, confirming the hypothesis that ozone could be used to improve berry and wine compositional and sensory quality.
RESUMEN
In Italy, Chianti Classico identifies a territory located in the heart of Tuscany that was once known as Chianti. From the pedological point of view, the entire DOCG (Denomination of controlled and guaranteed origin) has some common features but also shows many specific features related to certain small areas that give rise to the presence of many "terroirs". Due to the intertwining created by the alternation of valleys and hills and the different characteristics of the territory, factors such as altitude and exposure play a very important role in the vegetative and productive expression of grapes. Some production areas were identified within the appellation where it is argued that the terroir and the grapes are quite distinct from those of other surrounding areas, albeit within the Chianti Classico appellation. On the basis of this information and considering that no data are available in the literature, the present study proposed an innovative multidisciplinary approach (analytical and statistical) that was capable of carrying out an objective evaluation of the various sub-areas investigated, using Sangiovese grapes as the variety in question. This research took into account the climatic results and the different pedological characteristics, evaluating the evolutionary phenomena that were linked to the ripening of the grapes in each phase of its formation.
RESUMEN
This research aimed to explore the feasibility of fortifying bread with cooked Vitelotte potato powder and Citrus albedo, comparing the use of baker's yeast or sourdough as leavening agents. Breads obtained were thus subjected to physico-chemical and sensory characterizations. The replacement of part of the wheat flour with purple potato and albedo determined a significant enhancement of the phenolic profile and antioxidant status of fortified breads, as well as a longer shelf life. Thanks to its acidity and antimicrobial activity, sourdough improved the levels of health-promoting compounds and stability. Both the fortification and the leavening agent deeply affected the organoleptic, expression, and the aroma profile, of the fortified bread. Interestingly, albedo addition, despite its effectiveness in boosting the phenolic profile, determined a higher perception of aftertaste and bitterness, irrespective of the leavening agent. Based on these results, the use of purple potatoes and Citrus albedo, if properly formulated, could represent a valuable strategy for the development of high-quality products, with longer shelf-life.