Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Acoust Soc Am ; 154(4): 1982-1995, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37782119

RESUMEN

Harbour porpoises are visually inconspicuous but highly soniferous echolocating marine predators that are regularly studied using passive acoustic monitoring (PAM). PAM can provide quality data on animal abundance, human impact, habitat use, and behaviour. The probability of detecting porpoise clicks within a given area (P̂) is a key metric when interpreting PAM data. Estimates of P̂ can be used to determine the number of clicks per porpoise encounter that may have been missed on a PAM device, which, in turn, allows for the calculation of abundance and ideally non-biased comparison of acoustic data between habitats and time periods. However, P̂ is influenced by several factors, including the behaviour of the vocalising animal. Here, the common implicit assumption that changes in animal behaviour have a negligible effect on P̂ between different monitoring stations or across time is tested. Using a simulation-based approach informed by acoustic biologging data from 22 tagged harbour porpoises, it is demonstrated that porpoise behavioural states can have significant (up to 3× difference) effects on P̂. Consequently, the behavioural state of the animals must be considered in analysis of animal abundance to avoid substantial over- or underestimation of the true abundance, habitat use, or effects of human disturbance.


Asunto(s)
Ecolocación , Phocoena , Marsopas , Animales , Humanos , Ecosistema , Acústica
3.
J Exp Biol ; 225(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35037031

RESUMEN

Echolocating bats hunt prey on the wing under conditions of poor lighting by emission of loud calls and subsequent auditory processing of weak returning echoes. To do so, they need adequate echo-to-noise ratios (ENRs) to detect and distinguish target echoes from masking noise. Early obstacle avoidance experiments report high resilience to masking in free-flying bats, but whether this is due to spectral or spatiotemporal release from masking, advanced auditory signal detection or an increase in call amplitude (Lombard effect) remains unresolved. We hypothesized that bats with no spectral, spatial or temporal release from masking noise defend a certain ENR via a Lombard effect. We trained four bats (Myotis daubentonii) to approach and land on a target that broadcasted broadband noise at four different levels. An array of seven microphones enabled acoustic localization of the bats and source level estimation of their approach calls. Call duration and peak frequency did not change, but average call source levels (SLRMS, at 0.1 m as dB re. 20 µPa) increased, from 112 dB in the no-noise treatment, to 118 dB (maximum 129 dB) at the maximum noise level of 94 dB re. 20 µPa root mean square. The magnitude of the Lombard effect was small (0.13 dB SLRMS dB-1 of noise), resulting in mean broadband and narrowband ENRs of -11 and 8 dB, respectively, at the highest noise level. Despite these poor ENRs, the bats still performed echo-guided landings, making us conclude that they are very resilient to masking even when they cannot avoid it spectrally, spatially or temporally.


Asunto(s)
Quirópteros , Ecolocación , Animales , Ruido , Ultrasonido , Vocalización Animal
5.
Sci Rep ; 11(1): 23360, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862381

RESUMEN

A longer Arctic open water season is expected to increase underwater noise levels due to anthropogenic activities such as shipping, seismic surveys, sonar, and construction. Many Arctic marine mammal species depend on sound for communication, navigation, and foraging, therefore quantifying underwater noise levels is critical for documenting change and providing input to management and legislation. Here we present long-term underwater sound recordings from 26 deployments around Greenland from 2011 to 2020. Ambient noise was analysed in third octave and decade bands and further investigated using generic detectors searching for tonal and transient sounds. Ambient noise levels partly overlap with previous Arctic observations, however we report much lower noise levels than previously documented, specifically for Melville Bay and the Greenland Sea. Consistent seasonal noise patterns occur in Melville Bay, Baffin Bay and Greenland Sea, with noise levels peaking in late summer and autumn correlating with open water periods and seismic surveys. These three regions also had similar tonal detection patterns that peaked in May/June, likely due to bearded seal vocalisations. Biological activity was more readily identified using detectors rather than band levels. We encourage additional research to quantify proportional noise contributions from geophysical, biological, and anthropogenic sources in Arctic waters.

6.
Sci Adv ; 7(10)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658207

RESUMEN

How animals extract information from their surroundings to guide motor patterns is central to their survival. Here, we use echo-recording tags to show how wild hunting bats adjust their sensory strategies to their prey and natural environment. When searching, bats maximize the chances of detecting small prey by using large sensory volumes. During prey pursuit, they trade spatial for temporal information by reducing sensory volumes while increasing update rate and redundancy of their sensory scenes. These adjustments lead to very weak prey echoes that bats protect from interference by segregating prey sensory streams from the background using a combination of fast-acting sensory and motor strategies. Counterintuitively, these weak sensory scenes allow bats to be efficient hunters close to background clutter broadening the niches available to hunt for insects.

7.
J Acoust Soc Am ; 147(6): 4175, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32611133

RESUMEN

The source properties and radiation patterns of animal vocalisations define, along with propagation and noise conditions, the active space in which these vocalisations can be detected by conspecifics, predators, prey, and by passive acoustic monitoring (PAM). This study reports the 4π (360° horizontal and vertical) beam profile of a free-swimming, trained harbour porpoise measured using a 27-element hydrophone array. The forward echolocation beam is highly directional, as predicted by a piston model, and is consistent with previous measurements. However, at off-axis angles greater than ±30°, the beam attenuates more rapidly than the piston model and no side lobes are present. A diffuse back beam is also present with levels about -30 dB relative to the source level. In PAM, up to 50% of detections can be from portions of the beam profile with distorted click spectra, although this drops substantially for higher detection thresholds. Simulations of the probability of acoustically detecting a harbour porpoise show that a traditional piston model can underestimate the probability of detection compared to the actual three-dimensional radiation pattern documented here. This highlights the importance of empirical 4π measurements of beam profiles of toothed whales, both to improve understanding of toothed whale biology and to inform PAM.


Asunto(s)
Ecolocación , Phocoena , Acústica , Animales , Ruido/efectos adversos , Vocalización Animal
8.
PLoS One ; 15(5): e0229058, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32469874

RESUMEN

A wide range of anthropogenic structures exist in the marine environment with the extent of these set to increase as the global offshore renewable energy industry grows. Many of these pose acute risks to marine wildlife; for example, tidal energy generators have the potential to injure or kill seals and small cetaceans through collisions with moving turbine parts. Information on fine scale behaviour of animals close to operational turbines is required to understand the likely impact of these new technologies. There are inherent challenges associated with measuring the underwater movements of marine animals which have, so far, limited data collection. Here, we describe the development and application of a system for monitoring the three-dimensional movements of cetaceans in the immediate vicinity of a subsea structure. The system comprises twelve hydrophones and software for the detection and localisation of vocal marine mammals. We present data demonstrating the systems practical performance during a deployment on an operational tidal turbine between October 2017 and October 2019. Three-dimensional locations of cetaceans were derived from the passive acoustic data using time of arrival differences on each hydrophone. Localisation accuracy was assessed with an artificial sound source at known locations and a refined method of error estimation is presented. Calibration trials show that the system can accurately localise sounds to 2m accuracy within 20m of the turbine but that localisations become highly inaccurate at distances greater than 35m. The system is currently being used to provide data on rates of encounters between cetaceans and the turbine and to provide high resolution tracking data for animals close to the turbine. These data can be used to inform stakeholders and regulators on the likely impact of tidal turbines on cetaceans.


Asunto(s)
Acústica/instrumentación , Organismos Acuáticos , Conservación de los Recursos Naturales , Vocalización Animal/fisiología , Animales , Caniformia , Cetáceos/fisiología , Monitoreo del Ambiente , Humanos , Biología Marina , Ruido/efectos adversos , Energía Renovable/efectos adversos , Sonido , Olas de Marea
9.
J Acoust Soc Am ; 146(4): EL387, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31671977

RESUMEN

Algorithms are presented for the accurate time of arrival difference estimation of high frequency narrow band echolocation clicks from Harbor Porpoise. These clicks typically have a center frequency of around 130 kHz (wavelength ∼1.2 cm) and duration of <0.1 ms. When using hydrophones spaced centimeters apart, spatial aliasing can cause large errors on inter-hydrophone timing measurements due to the incorrect peak in the cross-correlation function of two signals being selected. It is shown that at sample rates of less than about 6 times the fundamental frequency, the incorrect correlation peak will be selected in 55% of measurements leading to large errors in time of arrival estimates. For clicks with a SNR > 10 dB these errors can be reduced by over two orders of magnitude through a combination of up-sampling the data and parabolic interpolation of peaks in the cross-correlation functions.

10.
Mar Pollut Bull ; 125(1-2): 360-366, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28958441

RESUMEN

Destructive fishing using explosives occurs in a number of countries worldwide, negatively impacting coral reefs and fisheries on which millions of people rely. Documenting, quantifying and combating the problem has proved problematic. In March-April 2015 231h of acoustic data were collected over 2692km of systematically laid transects along the entire coast of Tanzania. A total of 318 blasts were confirmed using a combination of manual and supervised semi-autonomous detection. Blasts were detected along the entire coastline, but almost 62% were within 80km of Dar es Salaam, where blast frequency reached almost 10blasts/h. This study is one of the first to use acoustic monitoring to provide a spatial assessment of the intensity of blast fishing. This can be a useful tool that can provide reliable data to define hotspots where the activity is concentrated and determine where enforcement should be focused for maximum impact.


Asunto(s)
Acuicultura/métodos , Conservación de los Recursos Naturales , Explosiones , Peces , Acústica , Animales , Arrecifes de Coral , Sustancias Explosivas , Tanzanía
11.
J Acoust Soc Am ; 141(2): 1120, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28253702

RESUMEN

The growing interest in generating electrical power from tidal currents using tidal turbine generators raises a number of environmental concerns, including the risk that marine mammals might be injured or killed through collision with rotating turbine blades. To understand this risk, information on how marine mammals use tidal rapid habitats and in particular, their underwater movements and dive behaviour is required. Porpoises, which are the most abundant small cetacean at most European tidal sites, are difficult animals to tag, and the limited size of tidal habitats means that any telemetered animal would be likely to spend only a small proportion of time within them. Here, an alternative approach is explored, whereby passive acoustic monitoring (PAM) is used to obtain fine scale geo-referenced tracks of harbour porpoises in tidal rapid areas. Large aperture hydrophone arrays are required to obtain accurate locations of animals from PAM data and automated algorithms are necessary to process the large quantities of acoustic data collected on such systems during a typical survey. Methods to automate localisation, including a method to match porpoise detections on different hydrophones and separate different vocalising animals, and an assessment of the localisation accuracy of the large aperture hydrophone array are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...