Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 108(3): 616-623, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37787684

RESUMEN

Turnip yellows virus (TuYV; Polerovirus, Solemoviridae) infects and causes yield losses in a range of economically important crop species, particularly the Brassicaceae. It is persistently transmitted by several aphid species and is difficult to control. Although the incidence and genetic diversity of TuYV has been extensively investigated in recent years, little is known about how the diversity within host plants relates to that in its vectors. Arable oilseed rape (Brassica napus) and vegetable brassica plants (Brassica oleracea), wild cabbage (B. oleracea), and aphids present on these plants were sampled in the field in three regions of the United Kingdom. High levels of TuYV (82 to 97%) were detected in plants in all three regions following enzyme-linked immunosorbent assays. TuYV was detected by reverse transcription polymerase chain reaction in Brevicoryne brassicae aphids collected from plants, and TuYV sequences were obtained. Two TuYV open reading frames, ORF0 and ORF3, were partially sequenced from 15 plants, and from one aphid collected from each plant. Comparative analyses between TuYV sequences from host plants and B. brassicae collected from respective plants revealed differences between some ORF0 sequences, which possibly indicated that at least two of the aphids might not have been carrying the same TuYV isolates as those present in their host plants. Maximum likelihood phylogenetic analyses including published, the new TuYV sequences described above, 101 previously unpublished sequences of TuYV from oilseed rape in the United Kingdom, and 13 also previously unpublished sequences of TuYV from oilseed rape in Europe and China revealed three distinct major clades for ORF0 and one for ORF3, with some distinct subclades. Some clustering was related to geographic origin. Explanations for TuYV sequence differences between plants and the aphids present on respective plants and implications for the epidemiology and control of TuYV are discussed.


Asunto(s)
Áfidos , Brassica napus , Brassica , Luteoviridae , Animales , Verduras , Filogenia , Productos Agrícolas , Variación Genética
2.
Front Immunol ; 14: 1273661, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954617

RESUMEN

Conventional dendritic cells (cDCs) are antigen-presenting cells (APCs) that play a central role in linking innate and adaptive immunity. cDCs have been well described in a number of different mammalian species, but remain poorly characterised in the chicken. In this study, we use previously described chicken cDC specific reagents, a novel gene-edited chicken line and single-cell RNA sequencing (scRNAseq) to characterise chicken splenic cDCs. In contrast to mammals, scRNAseq analysis indicates that the chicken spleen contains a single, chemokine receptor XCR1 expressing, cDC subset. By sexual maturity the XCR1+ cDC population is the most abundant mononuclear phagocyte cell subset in the chicken spleen. scRNAseq analysis revealed substantial heterogeneity within the chicken splenic XCR1+ cDC population. Immature MHC class II (MHCII)LOW XCR1+ cDCs expressed a range of viral resistance genes. Maturation to MHCIIHIGH XCR1+ cDCs was associated with reduced expression of anti-viral gene expression and increased expression of genes related to antigen presentation via the MHCII and cross-presentation pathways. To visualise and transiently ablate chicken XCR1+ cDCs in situ, we generated XCR1-iCaspase9-RFP chickens using a CRISPR-Cas9 knockin transgenesis approach to precisely edit the XCR1 locus, replacing the XCR1 coding region with genes for a fluorescent protein (TagRFP), and inducible Caspase 9. After inducible ablation, the chicken spleen is initially repopulated by immature CD1.1+ XCR1+ cDCs. XCR1+ cDCs are abundant in the splenic red pulp, in close association with CD8+ T-cells. Knockout of XCR1 prevented this clustering of cDCs with CD8+ T-cells. Taken together these data indicate a conserved role for chicken and mammalian XCR1+ cDCs in driving CD8+ T-cells responses.


Asunto(s)
Linfocitos T CD8-positivos , Pollos , Animales , Presentación de Antígeno , Células Dendríticas , Reactividad Cruzada , Mamíferos
3.
Immunology ; 165(2): 171-194, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767637

RESUMEN

Conventional dendritic cells (cDC) are bone marrow-derived immune cells that play a central role in linking innate and adaptive immunity. cDCs efficiently uptake, process and present antigen to naïve T cells, driving clonal expansion of antigen-specific T-cell responses. In chicken, vital reagents are lacking for the efficient and precise identification of cDCs. In this study, we have developed several novel reagents for the identification and characterization of chicken cDCs. Chicken FLT3 cDNA was cloned and a monoclonal antibody to cell surface FLT3 was generated. This antibody identified a distinct FLT3HI splenic subset which lack expression of signature markers for B cells, T cells or monocyte/macrophages. By combining anti-FLT3 and CSF1R-eGFP transgenic expression, three major populations within the mononuclear phagocyte system were identified in the spleen. The cDC1 subset of mammalian cDCs express the chemokine receptor XCR1. To characterize chicken cDCs, a synthetic chicken chemokine (C motif) ligand (XCL1) peptide conjugated to Alexa Fluor 647 was developed (XCL1AF647 ). Flow cytometry staining of XCL1AF647 on splenocytes showed that all chicken FLT3HI cells exclusively express XCR1, supporting the hypothesis that this population comprises bona fide chicken cDCs. Further analysis revealed that chicken cDCs expressed CSF1R but lacked the expression of CSF2R. Collectively, the cell surface phenotypes of chicken cDCs were partially conserved with mammalian XCR1+ cDC1, with distinct differences in CSF1R and CSF2R expression compared with mammalian orthologues. These original reagents allow the efficient identification of chicken cDCs to investigate their important roles in the chicken immunity and diseases.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo , Animales , Anticuerpos Monoclonales , Biomarcadores , Técnicas de Cultivo de Célula , Pollos , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Inmunofenotipificación , Receptores Acoplados a Proteínas G/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tirosina Quinasa 3 Similar a fms/genética
4.
Sci Rep ; 10(1): 19022, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149175

RESUMEN

Focal dysgenesis is a consistent feature of testicular dysgenesis syndrome (TDS) in humans. Rodent studies show that perturbation of androgens (e.g. following phthalate exposure) during a fetal masculinisation programming window (MPW) predisposes to a TDS phenotype. This study aimed to determine whether dissociation and reconstitution of rat fetal testis tissue during the MPW can be used to model and manipulate seminiferous cord development, including induction of focal dysgenesis, as described in TDS. Dissociated fetal rat testes were xenotransplanted subcutaneously into recipient mice for 4 weeks. Transplanted mice were treated with vehicle or di-n-butyl-phthalate (DBP, a plasticising chemical known to induce testicular dysgenesis in vivo in rats). Testosterone production by the transplants was measured in recipient mice and immunofluorescence was performed on the retrieved transplants to identify features consistent with focal testicular dysgenesis. Re-aggregation of rat fetal testis tissue xenotransplants during the MPW results in reconstitution of seminiferous cords. Features of focal testicular dysgenesis were present in re-aggregated testis, including ectopic Sertoli cells and intratubular Leydig cells (ITLCs). DBP exposure of recipient mice reduced androgen-dependent seminal vesicle weight (8.3 vs 26.7 mg; p < 0.05), but did not enhance features of focal dysgenesis including number of ITLCs (0.07 vs 0.10 cells/mm2; p > 0.05). We conclude that seminiferous cord reformation during the MPW results in development of focal dysgenesis. The system may be used to separate specific effects (e.g. androgen suppression) of individual chemical exposures from other mechanisms that may be conserved in TDS.


Asunto(s)
Disgenesia Gonadal/patología , Testículo/embriología , Animales , Femenino , Masculino , Embarazo , Ratas , Ratas Wistar , Testículo/crecimiento & desarrollo
5.
BMC Cancer ; 19(1): 1124, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31744479

RESUMEN

BACKGROUND: Testicular germ cell cancer (TGCC) develops from pre-malignant germ neoplasia in situ (GCNIS) cells. GCNIS originates from fetal gonocytes (POU5F1+/MAGE-A4-), which fail to differentiate to pre-spermatogonia (POU5F1-/MAGE-A4+) and undergo malignant transformation. Gankyrin is an oncogene which has been shown to prevent POU5F1 degradation and specifically interact with MAGE-A4 in hepatocellular carcinoma (HCC) cells. We aimed to investigate the role of Gankyrin in progression from gonocyte to pre-invasive GCNIS and subsequent invasive TGCC. METHODS: We determined Gankyrin expression in human fetal testicular tissue (gestational weeks 9-20; n = 38), human adult testicular tissue with active spermatogenesis (n = 9), human testicular tissue with germ cell maturation delay (n = 4), testicular tissue from patients with pre-invasive GCNIS (n = 6), and invasive TGCC including seminoma (n = 6) and teratoma (n = 7). Functional analysis was performed in-vitro by siRNA knock-down of Gankyrin in the NTera2 cells (derived from embryonal carcinoma). RESULTS: Germ cell expression of Gankyrin was restricted to a sub-population of prespermatogonia in human fetal testes. Nuclear Gankyrin was also expressed in GCNIS cells of childhood and adult pre-invasive TGCC patients, and in GCNIS from seminoma and non-seminoma patients. Cytoplasmic expression was observed in seminoma tumour cells and NTera2 cells. Gankyrin knock-down in NTera2 cells resulted in an increase in apoptosis mediated via the TP53 pathway, whilst POU5F1 expression was unaffected. Furthermore, Gankyrin knock-down in NTera2 cells increased cisplatin sensitivity with an increase in cell death (13%, p < 0.05) following Gankyrin knock-down, when compared to cisplatin treatment alone, likely via BAX and FAS. Our results demonstrate that Gankyrin expression changes in germ cells during normal transition from gonocyte to prespermatogonia. In addition, changes in Gankyrin localisation are associated with progression of pre-invasive GCNIS to invasive TGCC. Furthermore, we found that Gankyrin is involved in the regulation of NTera2 cell survival and that a reduction in Gankyrin expression can modulate cisplatin sensitivity. CONCLUSIONS: These results suggest that manipulation of Gankyrin expression may reduce the cisplatin dose required for the treatment of TGCC, with benefits in reducing dose-dependent side effects of chemotherapy. Further studies are required in order to assess the effects of modulating Gankyrin on GCNIS/TGCC using in vivo models.


Asunto(s)
Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Células Germinales y Embrionarias/genética , Oncogenes , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Proto-Oncogénicas/genética , Neoplasias Testiculares/genética , Apoptosis/genética , Biomarcadores de Tumor , Ciclo Celular/genética , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Masculino
6.
Cell Rep ; 25(7): 1924-1937.e4, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30428358

RESUMEN

Disruption of human fetal testis development is widely accepted to underlie testicular germ cell cancer (TGCC) origin and additional disorders within testicular dysgenesis syndrome (TDS). However, the mechanisms for the development of testicular dysgenesis in humans are unclear. We used ex vivo culture and xenograft approaches to investigate the importance of Nodal and Activin signaling in human fetal testis development. Inhibition of Nodal, and to some extent Activin, signaling disrupted seminiferous cord formation, abolished AMH expression, reduced androgen secretion, and decreased gonocyte numbers. Subsequent xenografting of testicular tissue rescued the disruptive effects on seminiferous cords and somatic cells but not germ cell effects. Stimulation of Nodal signaling increased the number of germ cells expressing pluripotency factors, and these persisted after xenografting. Our findings suggest a key role for Nodal signaling in the regulation of gonocyte differentiation and early human testis development with implications for the understanding of TGCC and TDS origin.


Asunto(s)
Proteína Nodal/metabolismo , Túbulos Seminíferos/citología , Transducción de Señal , Espermatozoides/citología , Espermatozoides/metabolismo , Testículo/embriología , Activinas/metabolismo , Benzamidas/farmacología , Dioxoles/farmacología , Femenino , Humanos , Masculino , Embarazo , Trimestres del Embarazo
7.
Hum Reprod ; 33(11): 2107-2121, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272154

RESUMEN

STUDY QUESTION: Does loss of DMRT1 in human fetal testis alter testicular development and result in testicular dysgenesis? SUMMARY ANSWER: DMRT1 repression in human fetal testis alters the expression of key testicular and ovarian determining genes, and leads to focal testicular dysgenesis. WHAT IS KNOWN ALREADY: Testicular dysgenesis syndrome (TDS) is associated with common testicular disorders in young men, but its etiology is unknown. DMRT1 has been shown to play a role in the regulation of sex differentiation in the vertebrate gonad. Downregulation of DMRT1 in male mice results in trans-differentiation of Sertoli cells into granulosa (FOXL2+) cells resulting in an ovarian gonadal phenotype. STUDY DESIGN, SIZE, DURATION: To determine the effect of DMRT1 repression on human fetal testes, we developed a novel system for genetic manipulation, which utilizes a Lentivral delivered miRNA during short-term in vitro culture (2 weeks). A long-term (4-6 weeks) ex vivo xenograft model was used to determine the subsequent effects of DMRT1 repression on testicular development and maintenance. We included first and second-trimester testis tissue (8-20 weeks gestation; n = 12) in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human fetal testes were cultured in vitro and exposed to either of two DMRT1 miRNAs (miR536, miR641), or to scrambled control miRNA, for 24 h. This was followed by a further 14 days of culture (n = 3-4), or xenografting (n = 5) into immunocompromised mice for 4-6 weeks. Tissues were analyzed by histology, immunohistochemistry, immunofluorescence and quantitative RT-PCR. Endpoints included histological evaluation of seminiferous cord integrity, mRNA expression of testicular, ovarian and germ cell genes, and assessment of cell number and protein expression for proliferation, apoptosis and pluripotency factors. Statistical analysis was performed using a linear mixed effect model. MAIN RESULTS AND THE ROLE OF CHANCE: DMRT1 repression (miR536/miR641) resulted in a loss of DMRT1 protein expression in a sub-population of Sertoli cells of first trimester (8-11 weeks gestation) human fetal testis; however, this did not affect the completion of seminiferous cord formation or morphological appearance. In second-trimester testis (12-20 weeks gestation), DMRT1 repression (miR536/miR641) resulted in disruption of seminiferous cords with absence of DMRT1 protein expression in Sertoli (SOX9+) cells. No differences in proliferation (Ki67+) were observed and apoptotic cells (CC3+) were rare. Expression of the Sertoli cell associated gene, SOX8, was significantly reduced (miR536, 34% reduction, P = 0.031; miR641 36% reduction, P = 0.026), whilst SOX9 expression was unaffected. Changes in expression of AMH (miR536, 100% increase, P = 0.033), CYP26B1 (miR641, 38% reduction, P = 0.05) and PTGDS (miR642, 30% reduction, P = 0.0076) were also observed. Amongst granulosa cell associated genes, there was a significant downregulation in R-spondin 1 expression (miR536, 76% reduction, P < 0.0001; miR641, 49% reduction, P = 0.046); however, there were no changes in expression of the granulosa cell marker, FOXL2. Analysis of germ cell associated genes demonstrated a significant increase in the expression of the pluripotency gene OCT4 (miR536, 233%, P < 0.001). We used the xenograft system to investigate the longer-term effects of seminiferous cord disruption via DMRT1 repression. As was evident in vitro for second-trimester samples, DMRT1 repression resulted in focal testicular dysgenesis similar to that described in adults with TDS. These dysgenetic areas were devoid of germ cells, whilst expression of FOXL2 within the dysgenetic areas, indicated trans-differentiation from a male (Sertoli cell) to female (granulosa cell) phenotype. LIMITATIONS, REASONS FOR CAUTION: Human fetal testis tissue is a limited resource; however, we were able to demonstrate significant effects of DMRT1 repression on the expression of germ and somatic cell genes, in addition to the induction of focal testicular dysgenesis, using these limited samples. In vitro culture may not reflect all aspects of human fetal testis development and function; however, the concurrent use of the xenograft model which represents a more physiological system supports the validity of the in vitro findings. WIDER IMPLICATIONS OF THE FINDINGS: Our findings have important implications for understanding the role of DMRT1 in human testis development and in the origin of testicular dysgenesis. In addition, we provide validation of a novel system that can be used to determine the effects of repression of genes that have been implicated in gonadal development and associated human reproductive disorders. STUDY FUNDING/COMPETING INTEREST(S): This project was funded by a Wellcome Trust Intermediate Clinical Fellowship (Grant No. 098522) awarded to RTM. LBS was supported by MRC Programme Grant MR/N002970/1. RAA was supported by MRC Programme Grant G1100357/1. RMS was supported by MRC Programme Grant G33253. This work was undertaken in the MRC Centre for Reproductive Health which is funded by the MRC Centre grant MR/N022556/1. The funding bodies had no input into the conduct of the research or the production of this manuscript. The authors have declared no conflicts of interest.


Asunto(s)
Disgenesia Gonadal/embriología , Disgenesia Gonadal/genética , Testículo/embriología , Factores de Transcripción/metabolismo , Animales , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Desnudos , MicroARNs , Células de Sertoli/metabolismo
8.
Environ Health Perspect ; 126(4): 047006, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29665328

RESUMEN

BACKGROUND: Analgesic exposure during pregnancy may affect aspects of fetal gonadal development that are targeted by endocrine disruptors. OBJECTIVES: We investigated whether therapeutically relevant doses of acetaminophen and ibuprofen affect germ cell (GC) development in human fetal testes/ovaries using in vitro and xenograft approaches. METHODS: First-trimester human fetal testes/ovaries were cultured and exposed to acetaminophen or ibuprofen (7 d). Second-trimester human fetal testes were xenografted into mice and exposed to acetaminophen (1 or 7 d), or ibuprofen (7 d). To determine mechanism of action, a human GC tumor­derived cell line (NTera2) exhibiting fetal GC characteristics was used in addition to in vitro and in vivo rat models. RESULTS AND DISCUSSION: Gonocyte (TFAP2C+) number was reduced relative to controls in first-trimester human fetal testes exposed in vitro to acetaminophen (-28%) or ibuprofen (-22%) and also in ovaries exposed to acetaminophen (-43%) or ibuprofen (-49%). Acetaminophen exposure reduced gonocyte number by 17% and 30% in xenografted second-trimester human fetal testes after treatment of host mice for 1 or 7 d, respectively. NTera2 cell number was reduced following exposure to either analgesic or prostaglandin E2 (PGE2) receptor antagonists, whereas PGE2 agonists prevented acetaminophen-induced reduction in NTera2 cell number. Expression of GC pluripotency genes, and genes that regulate DNA/histone methylation, also differed from controls following analgesic and PGE2 receptor antagonist exposures. Gene expression changes were observed in rat fetal testis/ovary cultures and after in vivo acetaminophen exposure of pregnant rats. For example, expression of the epigenetic regulator TET1, was increased following exposure to acetaminophen in human NTera2 cells, rat fetal testis/ovary cultures, and in fetal testes and ovaries after in vivo exposure of pregnant rats, indicating translatability across experimental models and species. CONCLUSIONS: Our results demonstrate evidence of PGE2-mediated effects of acetaminophen and ibuprofen on GC/NTera2 cells, which raises concerns about analgesic use during human pregnancy that warrant further investigation. https://doi.org/10.1289/EHP2307.


Asunto(s)
Acetaminofén/efectos adversos , Diferenciación Celular/efectos de los fármacos , Desarrollo Fetal/efectos de los fármacos , Células Germinativas/efectos de los fármacos , Ibuprofeno/efectos adversos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Xenoinjertos , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Desnudos , Ovario/efectos de los fármacos , Embarazo , Primer Trimestre del Embarazo , Segundo Trimestre del Embarazo , Testículo/efectos de los fármacos
9.
Sci Transl Med ; 7(288): 288ra80, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25995226

RESUMEN

Most common male reproductive disorders are linked to lower testosterone exposure in fetal life, although the factors responsible for suppressing fetal testosterone remain largely unknown. Protracted use of acetaminophen during pregnancy is associated with increased risk of cryptorchidism in sons, but effects on fetal testosterone production have not been demonstrated. We used a validated xenograft model to expose human fetal testes to clinically relevant doses and regimens of acetaminophen. Exposure to a therapeutic dose of acetaminophen for 7 days significantly reduced plasma testosterone (45% reduction; P = 0.025) and seminal vesicle weight (a biomarker of androgen exposure; 18% reduction; P = 0.005) in castrate host mice bearing human fetal testis xenografts, whereas acetaminophen exposure for just 1 day did not alter either parameter. Plasma acetaminophen concentrations (at 1 hour after the final dose) in exposed host mice were substantially below those reported in humans after a therapeutic oral dose. Subsequent in utero exposure studies in rats indicated that the acetaminophen-induced reduction in testosterone likely results from reduced expression of key steroidogenic enzymes (Cyp11a1, Cyp17a1). Our results suggest that protracted use of acetaminophen (1 week) may suppress fetal testosterone production, which could have adverse consequences. Further studies are required to establish the dose-response and treatment-duration relationships to delineate the maximum dose and treatment period without this adverse effect.


Asunto(s)
Acetaminofén/toxicidad , Testículo/efectos de los fármacos , Testosterona/biosíntesis , Animales , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Femenino , Supervivencia de Injerto/efectos de los fármacos , Xenoinjertos , Humanos , Masculino , Ratones , Orquiectomía , Tamaño de los Órganos , Embarazo , Ratas , Medición de Riesgo , Vesículas Seminales/efectos de los fármacos , Vesículas Seminales/crecimiento & desarrollo , Vesículas Seminales/metabolismo , Esteroide 17-alfa-Hidroxilasa/metabolismo , Testículo/embriología , Testículo/metabolismo , Testosterona/sangre , Factores de Tiempo
10.
Cell Tissue Res ; 361(3): 885-98, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25810367

RESUMEN

The chemokine receptor CXCR7 interacts with the chemokines CXCL11 and CXCL12. During development, this ligand receptor system (C-X-C) provokes cell-type-specific responses in terms of migration, adhesion or ligand sequestration. It is active in zebrafish and rodents but no data are available for its presence or function in primate testes. Real-time quantitative polymerase chain reaction was performed in monkeys to detect CXCL11, CXCL12 and CXCR7. At the protein level, CXCL12 and CXCR7 were localized in the testes of the marmoset (Callitrix jacchus) whereas CXCR7 patterns were determined for various stages in human testes. Morphometry and flow cytometry were applied to quantify CXCR7-positive cells in monkeys. Transcript levels and protein expression of CXCR7 were detectable throughout testicular development. In both species, CXCR7 protein expression was restricted to premeiotic germ cells. In immature marmoset testes, 69.9% ± 9% of the total germ cell population were labelled for CXCR7, whereas in the adult, 4.7% ± 2.7% were positive for CXCR7. CXCL12 mRNA was detectable in all developmental stages in marmosets. The CXCL12 protein was exclusively localized to Sertoli cells. This pattern of CXCL12/CXCR7 indicates their involvement in regulatory processes that possibly orchestrate the interaction between undifferentiated germ cells and Sertoli cells.


Asunto(s)
Diferenciación Celular/fisiología , Quimiocina CXCL11/metabolismo , Quimiocina CXCL12/metabolismo , Receptores CXCR/metabolismo , Testículo/metabolismo , Animales , Callithrix , Línea Celular Tumoral/metabolismo , Humanos , Ligandos , Masculino , Transducción de Señal/fisiología
11.
Mod Pathol ; 27(9): 1255-1266, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24457464

RESUMEN

Testicular germ cell cancer develops from premalignant intratubular germ cell neoplasia, unclassified cells that are believed to arise from failure of normal maturation of fetal germ cells from gonocytes (OCT4(+)/MAGEA4(-)) into pre-spermatogonia (OCT4(-)/MAGEA4(+)). Intratubular germ cell neoplasia cell subpopulations based on stage of germ cell differentiation have been described, however the importance of these subpopulations in terms of invasive potential has not been reported. We hypothesized that cells expressing an immature (OCT4(+)/MAGEA4(-)) germ cell profile would exhibit an increased proliferation rate compared with those with a mature profile (OCT4(+)/MAGEA4(+)). Therefore, we performed triple immunofluorescence and stereology to quantify the different intratubular germ cell neoplasia cell subpopulations, based on expression of germ cell (OCT4, PLAP, AP2γ, MAGEA4, VASA) and proliferation (Ki67) markers, in testis sections from patients with preinvasive disease, seminoma, and non-seminoma. We compared these subpopulations with normal human fetal testis and with seminoma cells. Heterogeneity of protein expression was demonstrated in intratubular germ cell neoplasia cells with respect to gonocyte and spermatogonial markers. It included an embryonic/fetal germ cell subpopulation lacking expression of the definitive intratubular germ cell neoplasia marker OCT4, that did not correspond to a physiological (fetal) germ cell subpopulation. OCT4(+)/MAGEA4(-) cells showed a significantly increased rate of proliferation compared with the OCT4(+)/MAGEA4(+) population (12.8 versus 3.4%, P<0.0001) irrespective of histological tumor type, reflected in the predominance of OCT4(+)/MAGEA4(-) cells in the invasive tumor component. Surprisingly, OCT4(+)/MAGEA4(-) cells in patients with preinvasive disease showed significantly higher proliferation compared to those with seminoma or non-seminoma (18.1 versus 10.2 versus 7.2%, P<0.05, respectively). In conclusion, this study has demonstrated that OCT4(+)/MAGEA4(-) cells are the most frequent and most proliferative cell population in tubules containing intratubular germ cell neoplasia, which appears to be an important factor in determining invasive potential of intratubular germ cell neoplasia to seminomas.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de Células Germinales y Embrionarias/metabolismo , Túbulos Seminíferos/patología , Neoplasias Testiculares/metabolismo , Adulto , Biomarcadores/metabolismo , Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Proliferación Celular , Niño , Técnica del Anticuerpo Fluorescente Indirecta , Germinoma/metabolismo , Germinoma/patología , Humanos , Inmunohistoquímica , Lactante , Masculino , Invasividad Neoplásica , Neoplasias de Células Germinales y Embrionarias/patología , Seminoma/metabolismo , Seminoma/patología , Espermatogonias/metabolismo , Neoplasias Testiculares/patología , Testículo/embriología , Adulto Joven
12.
Proc Natl Acad Sci U S A ; 109(23): E1466-72, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22586100

RESUMEN

The derivation of germ-line competent avian primordial germ cells establishes a cell-based model system for the investigation of germ cell differentiation and the production of genetically modified animals. Current methods to modify primordial germ cells using DNA or retroviral vectors are inefficient and prone to epigenetic silencing. Here, we validate the use of transposable elements for the genetic manipulation of primordial germ cells. We demonstrate that chicken primordial germ cells can be modified in vitro using transposable elements. Both piggyBac and Tol2 transposons efficiently transpose primordial germ cells. Tol2 transposon integration sites were spread throughout both the macro- and microchromosomes of the chicken genome and were more prevalent in gene transcriptional units and intronic regions, consistent with transposon integrations observed in other species. We determined that the presence of insulator elements was not required for reporter gene expression from the integrated transposon. We further demonstrate that a gene-trap cassette carried in the Tol2 transposon can trap and mutate endogenous transcripts in primordial germ cells. Finally, we observed that modified primordial germ cells form functional gametes as demonstrated by the generation of transgenic offspring that correctly expressed a reporter gene carried in the transposon. Transposable elements are therefore efficient vectors for the genetic manipulation of primordial germ cells and the chicken genome.


Asunto(s)
Animales Modificados Genéticamente/genética , Elementos Transponibles de ADN/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Células Germinativas/metabolismo , Animales , Southern Blotting , Técnicas de Cultivo de Célula , Embrión de Pollo , Cartilla de ADN/genética , Genes Reporteros/genética , Reacción en Cadena de la Polimerasa/métodos
13.
PLoS One ; 5(11): e15518, 2010 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-21124737

RESUMEN

BACKGROUND: Avian primordial germ cells (PGCs) have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds. PRINCIPAL FINDINGS: We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring. CONCLUSIONS: The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications.


Asunto(s)
Linaje de la Célula , Proliferación Celular , Células Madre Embrionarias/citología , Células Germinativas/citología , Animales , Animales Modificados Genéticamente , Benzamidas/farmacología , Células Cultivadas , Embrión de Pollo , Difenilamina/análogos & derivados , Difenilamina/farmacología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Meiosis , Fosfatidilinositol 3-Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA