Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617308

RESUMEN

The RIG-I-like receptors (RLRs), RIG-I and MDA5, are innate sensors of RNA virus infections that are critical for mounting a robust antiviral immune response. We have shown previously that HOIL1, a component of the Linear Ubiquitin Chain Assembly Complex (LUBAC), is essential for interferon (IFN) induction in response to viruses sensed by MDA5, but not for viruses sensed by RIG-I. LUBAC contains two unusual E3 ubiquitin ligases, HOIL1 and HOIP. HOIP generates methionine-1-linked polyubiquitin chains, whereas HOIL1 has recently been shown to conjugate ubiquitin onto serine and threonine residues. Here, we examined the differential requirement for HOIL1 and HOIP E3 ligase activities in RLR-mediated IFN induction. We determined that HOIL1 E3 ligase activity was critical for MDA5-dependent IFN induction, while HOIP E3 ligase activity played only a modest role in promoting IFN induction. HOIL1 E3 ligase promoted MDA5 oligomerization, its translocation to mitochondrial-associated membranes, and the formation of MAVS aggregates. We identified that HOIL1 can interact with and facilitate the ubiquitination of LGP2, a positive regulator of MDA5 oligomerization. In summary, our work identifies LGP2 ubiquitination by HOIL1 in facilitating the activation of MDA5 and the induction of a robust IFN response.

2.
J Immunol ; 211(12): 1823-1834, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37902285

RESUMEN

Heme-oxidized IRP2 ubiquitin ligase-1 (HOIL1)-deficient patients experience chronic intestinal inflammation and diarrhea as well as increased susceptibility to bacterial infections. HOIL1 is a component of the linear ubiquitin chain assembly complex that regulates immune signaling pathways, including NF-κB-activating pathways. We have shown previously that HOIL1 is essential for survival following Citrobacter rodentium gastrointestinal infection of mice, but the mechanism of protection by HOIL1 was not examined. C. rodentium is an important murine model for human attaching and effacing pathogens, enteropathogenic and enterohemorrhagic Escherichia coli that cause diarrhea and foodborne illnesses and lead to severe disease in children and immunocompromised individuals. In this study, we found that C. rodentium infection resulted in severe colitis and dissemination of C. rodentium to systemic organs in HOIL1-deficient mice. HOIL1 was important in the innate immune response to limit early replication and dissemination of C. rodentium. Using bone marrow chimeras and cell type-specific knockout mice, we found that HOIL1 functioned in radiation-resistant cells and partly in radiation-sensitive cells and in myeloid cells to limit disease, but it was dispensable in intestinal epithelial cells. HOIL1 deficiency significantly impaired the expansion of group 3 innate lymphoid cells and their production of IL-22 during C. rodentium infection. Understanding the role HOIL1 plays in type 3 inflammation and in limiting the pathogenesis of attaching and effacing lesion-forming bacteria will provide further insight into the innate immune response to gastrointestinal pathogens and inflammatory disorders.


Asunto(s)
Infecciones por Enterobacteriaceae , Inmunidad Innata , Niño , Humanos , Animales , Ratones , Citrobacter rodentium/fisiología , Ligasas , Linfocitos/patología , Colon/patología , Inflamación/patología , Diarrea/patología , Ubiquitinas , Ratones Endogámicos C57BL
3.
Mucosal Immunol ; 15(4): 642-655, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35534698

RESUMEN

Patients with mutations in HOIL1 experience a complex immune disorder including intestinal inflammation. To investigate the role of HOIL1 in regulating intestinal inflammation, we employed a mouse model of partial HOIL1 deficiency. The ileum of HOIL1-deficient mice displayed features of type 2 inflammation including tuft cell and goblet cell hyperplasia, and elevated expression of Il13, Il5 and Il25 mRNA. Inflammation persisted in the absence of T and B cells, and bone marrow chimeric mice revealed a requirement for HOIL1 expression in radiation-resistant cells to regulate inflammation. Although disruption of IL-4 receptor alpha (IL4Rα) signaling on intestinal epithelial cells ameliorated tuft and goblet cell hyperplasia, expression of Il5 and Il13 mRNA remained elevated. KLRG1hi CD90lo group 2 innate lymphoid cells were increased independent of IL4Rα signaling, tuft cell hyperplasia and IL-25 induction. Antibiotic treatment dampened intestinal inflammation indicating commensal microbes as a contributing factor. We have identified a key role for HOIL1, a component of the Linear Ubiquitin Chain Assembly Complex, in regulating type 2 inflammation in the small intestine. Understanding the mechanism by which HOIL1 regulates type 2 inflammation will advance our understanding of intestinal homeostasis and inflammatory disorders and may lead to the identification of new targets for treatment.


Asunto(s)
Inmunidad Innata , Interleucina-13 , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Hiperplasia , Inflamación , Interleucina-5 , Intestino Delgado , Linfocitos , Ratones , ARN Mensajero
4.
Nat Microbiol ; 3(12): 1472-1485, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30478389

RESUMEN

Plasma membrane integrity is essential for the viability of eukaryotic cells. In response to bacterial pore-forming toxins, disrupted regions of the membrane are rapidly repaired. However, the pathways that mediate plasma membrane repair are unclear. Here we show that autophagy-related (ATG) protein ATG16L1 and its binding partners ATG5 and ATG12 are required for plasma membrane repair through a pathway independent of macroautophagy. ATG16L1 is required for lysosome fusion with the plasma membrane and blebbing responses that promote membrane repair. ATG16L1 deficiency causes accumulation of cholesterol in lysosomes that contributes to defective membrane repair. Cell-to-cell spread by Listeria monocytogenes requires membrane damage by the bacterial toxin listeriolysin O, which is restricted by ATG16L1-dependent membrane repair. Cells harbouring the ATG16L1 T300A allele associated with inflammatory bowel disease were also found to accumulate cholesterol and be defective in repair, linking a common inflammatory disease to plasma membrane integrity. Thus, plasma membrane repair could be an important therapeutic target for the treatment of bacterial infections and inflammatory disorders.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Listeria monocytogenes/efectos de los fármacos , Animales , Autofagia , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Toxinas Bacterianas/toxicidad , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/farmacología , Colesterol/metabolismo , Modelos Animales de Enfermedad , Exocitosis , Células HeLa , Proteínas de Choque Térmico/toxicidad , Proteínas Hemolisinas/toxicidad , Humanos , Listeria monocytogenes/metabolismo , Lisosomas , Masculino , Ratones
5.
J Virol ; 92(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30209176

RESUMEN

The linear ubiquitin chain assembly complex (LUBAC), composed of heme-oxidized IRP2 ubiquitin ligase 1 (HOIL1), HOIL1-interacting protein (HOIP), and SHANK-associated RH domain-interacting protein (SHARPIN), is a crucial regulator of multiple immune signaling pathways. In humans, HOIL1 or HOIP deficiency is associated with an immune disorder involving autoinflammation, immunodeficiency, and inflammatory bowel disease (IBD)-like symptoms. During viral infection, LUBAC is reported to inhibit the induction of interferon (IFN) by the cytosolic RNA sensor retinoic acid-inducible gene I (RIG-I). Surprisingly, we found that HOIL1 is essential for the induction of both type I and type III IFNs, as well as the phosphorylation of IFN regulatory factor 3 (IRF3), during murine norovirus (MNoV) infection in cultured dendritic cells. The RIG-I-like receptor, melanoma differentiation-associated protein 5 (MDA5), is also required for IFN induction and IRF3 phosphorylation during MNoV infection. Furthermore, HOIL1 and MDA5 were required for IFN induction after Theiler's murine encephalomyelitis virus infection and poly(I·C) transfection, but not Sendai virus or vesicular stomatitis virus infection, indicating that HOIL1 and LUBAC are required selectively for MDA5 signaling. Moreover, Hoil1-/- mice exhibited defective control of acute and persistent murine norovirus infection and defective regulation of MNoV persistence by the microbiome as also observed previously for mice deficient in interferon lambda (IFN-λ) receptor, signal transducer and activator of transcription factor 1 (STAT1), and IRF3. These data indicate that LUBAC plays a critical role in IFN induction to control RNA viruses sensed by MDA5.IMPORTANCE Human noroviruses are a leading cause of gastroenteritis throughout the world but are challenging to study in vivo and in vitro Murine norovirus (MNoV) provides a tractable genetic and small-animal model to study norovirus biology and immune responses. Interferons are critical mediators of antiviral immunity, but excessive expression can dysregulate the immune system. IFN-λ plays an important role at mucosal surfaces, including the gastrointestinal tract, and both IFN-λ and commensal enteric bacteria are important modulators of persistent MNoV infection. LUBAC, of which HOIL1 is a component, is reported to inhibit type I IFN induction after RIG-I stimulation. We show, in contrast, that HOIL1 is critical for type I and III IFN induction during infection with MNoV, a virus that preferentially activates MDA5. Moreover, HOIL1 regulates MNoV infection in vivo These data reveal distinct functions for LUBAC in these closely related signaling pathways and in modulation of IFN expression.


Asunto(s)
Infecciones por Caliciviridae/virología , Interferón Tipo I/metabolismo , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferones/metabolismo , Norovirus/patogenicidad , Ubiquitina-Proteína Ligasas/fisiología , Animales , Infecciones por Caliciviridae/genética , Infecciones por Caliciviridae/metabolismo , Infecciones por Caliciviridae/microbiología , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Células Dendríticas/virología , Fibroblastos/metabolismo , Fibroblastos/microbiología , Fibroblastos/virología , Genoma Viral , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/genética , Helicasa Inducida por Interferón IFIH1/genética , Interferones/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota , Norovirus/genética , Fosforilación , Interferón lambda
6.
Science ; 360(6385): 204-208, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29650672

RESUMEN

Complex interactions between host immunity and the microbiome regulate norovirus infection. However, the mechanism of host immune promotion of enteric virus infection remains obscure. The cellular tropism of noroviruses is also unknown. Recently, we identified CD300lf as a murine norovirus (MNoV) receptor. In this study, we have shown that tuft cells, a rare type of intestinal epithelial cell, express CD300lf and are the target cell for MNoV in the mouse intestine. We found that type 2 cytokines, which induce tuft cell proliferation, promote MNoV infection in vivo. These cytokines can replace the effect of commensal microbiota in promoting virus infection. Our work thus provides insight into how the immune system and microbes can coordinately promote enteric viral infection.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Enterocitos/inmunología , Enterocitos/virología , Microbiota/inmunología , Norovirus/fisiología , Tropismo Viral/inmunología , Animales , Proliferación Celular , Citocinas/metabolismo , Ratones , Receptores Inmunológicos/metabolismo
8.
Cell Host Microbe ; 17(6): 811-819, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26048136

RESUMEN

Type I interferons (IFNs) are critical mediators of antiviral defense, but their elicitation by bacterial pathogens can be detrimental to hosts. Many intracellular bacterial pathogens, including Mycobacterium tuberculosis, induce type I IFNs following phagosomal membrane perturbations. Cytosolic M. tuberculosis DNA has been implicated as a trigger for IFN production, but the mechanisms remain obscure. We report that the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), is required for activating IFN production via the STING/TBK1/IRF3 pathway during M. tuberculosis and L. pneumophila infection of macrophages, whereas L. monocytogenes short-circuits this pathway by producing the STING agonist, c-di-AMP. Upon sensing cytosolic DNA, cGAS also activates cell-intrinsic antibacterial defenses, promoting autophagic targeting of M. tuberculosis. Importantly, we show that cGAS binds M. tuberculosis DNA during infection, providing direct evidence that this unique host-pathogen interaction occurs in vivo. These data uncover a mechanism by which IFN is likely elicited during active human infections.


Asunto(s)
ADN Bacteriano/metabolismo , Interacciones Huésped-Patógeno , Interferón Tipo I/metabolismo , Mycobacterium tuberculosis/genética , Nucleotidiltransferasas/metabolismo , Animales , Antígenos Bacterianos/metabolismo , Autofagia/fisiología , Proteínas Bacterianas/metabolismo , Citosol/metabolismo , Femenino , Legionella pneumophila/genética , Legionella pneumophila/patogenicidad , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Mycobacterium tuberculosis/patogenicidad , Nucleotidiltransferasas/genética , Tuberculosis/microbiología
9.
Nature ; 520(7548): 553-7, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25642965

RESUMEN

Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids. The abundant mtDNA-binding protein TFAM (transcription factor A, mitochondrial) regulates nucleoid architecture, abundance and segregation. Complete mtDNA depletion profoundly impairs oxidative phosphorylation, triggering calcium-dependent stress signalling and adaptive metabolic responses. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and ageing, remain poorly defined. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signalling to enhance the expression of a subset of interferon-stimulated genes. Mechanistically, we find that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS (also known as MB21D1) and promotes STING (also known as TMEM173)-IRF3-dependent signalling to elevate interferon-stimulated gene expression, potentiate type I interferon responses and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which enhances antiviral signalling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signalling and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully engage antiviral innate immunity.


Asunto(s)
ADN Mitocondrial/metabolismo , Herpesvirus Humano 1/inmunología , Inmunidad Innata/inmunología , Estrés Fisiológico , Animales , Línea Celular , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Proteínas del Grupo de Alta Movilidad/deficiencia , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Nucleotidiltransferasas/metabolismo
10.
Elife ; 42015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25599590

RESUMEN

Variation in the presentation of hereditary immunodeficiencies may be explained by genetic or environmental factors. Patients with mutations in HOIL1 (RBCK1) present with amylopectinosis-associated myopathy with or without hyper-inflammation and immunodeficiency. We report that barrier-raised HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium but show minimal signs of hyper-inflammation. However, they show immunodeficiency upon acute infection with Listeria monocytogenes, Toxoplasma gondii or Citrobacter rodentium. Increased susceptibility to Listeria was due to HOIL-1 function in hematopoietic cells and macrophages in production of protective cytokines. In contrast, HOIL-1-deficient mice showed enhanced control of chronic Mycobacterium tuberculosis or murine γ-herpesvirus 68 (MHV68), and these infections conferred a hyper-inflammatory phenotype. Surprisingly, chronic infection with MHV68 complemented the immunodeficiency of HOIL-1, IL-6, Caspase-1 and Caspase-1;Caspase-11-deficient mice following Listeria infection. Thus chronic herpesvirus infection generates signs of auto-inflammation and complements genetic immunodeficiency in mutant mice, highlighting the importance of accounting for the virome in genotype-phenotype studies.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/patología , Herpesviridae/fisiología , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/virología , Enfermedad Aguda , Animales , Células de la Médula Ósea/citología , Caspasa 1/metabolismo , Compartimento Celular , Enfermedad Crónica , Citrobacter/fisiología , Citocinas/biosíntesis , Prueba de Complementación Genética , Infecciones por Herpesviridae/virología , Humanos , Inmunidad Innata , Inflamación/patología , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Listeria monocytogenes/fisiología , Listeriosis/inmunología , Listeriosis/microbiología , Listeriosis/patología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Mycobacterium tuberculosis/fisiología , Fenotipo , Rhadinovirus/fisiología , Toxoplasma , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
Nature ; 505(7485): 691-5, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24284630

RESUMEN

The type I interferon (IFN) response protects cells from viral infection by inducing hundreds of interferon-stimulated genes (ISGs), some of which encode direct antiviral effectors. Recent screening studies have begun to catalogue ISGs with antiviral activity against several RNA and DNA viruses. However, antiviral ISG specificity across multiple distinct classes of viruses remains largely unexplored. Here we used an ectopic expression assay to screen a library of more than 350 human ISGs for effects on 14 viruses representing 7 families and 11 genera. We show that 47 genes inhibit one or more viruses, and 25 genes enhance virus infectivity. Comparative analysis reveals that the screened ISGs target positive-sense single-stranded RNA viruses more effectively than negative-sense single-stranded RNA viruses. Gene clustering highlights the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS, also known as MB21D1) as a gene whose expression also broadly inhibits several RNA viruses. In vitro, lentiviral delivery of enzymatically active cGAS triggers a STING-dependent, IRF3-mediated antiviral program that functions independently of canonical IFN/STAT1 signalling. In vivo, genetic ablation of murine cGAS reveals its requirement in the antiviral response to two DNA viruses, and an unappreciated contribution to the innate control of an RNA virus. These studies uncover new paradigms for the preferential specificity of IFN-mediated antiviral pathways spanning several virus families.


Asunto(s)
Inmunidad Innata/genética , Inmunidad Innata/inmunología , Interferones/inmunología , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo , Virus/inmunología , Animales , Análisis por Conglomerados , Virus ADN/inmunología , Virus ADN/patogenicidad , Citometría de Flujo , Biblioteca de Genes , Factor 3 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferones/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Nucleotidiltransferasas/deficiencia , Nucleotidiltransferasas/genética , Virus ARN/inmunología , Virus ARN/patogenicidad , Factor de Transcripción STAT1/metabolismo , Especificidad por Sustrato , Virus/clasificación , Virus/patogenicidad
12.
BMC Mol Biol ; 14: 16, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23890083

RESUMEN

The RNA binding protein DEAD-END (DND1) is one of the few proteins known to regulate microRNA (miRNA) activity at the level of miRNA-mRNA interaction. DND1 blocks miRNA interaction with the 3'-untranslated region (3'-UTR) of specific mRNAs and restores protein expression. Previously, we showed that the DNA cytosine deaminase, APOBEC3 (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide like 3), interacts with DND1. APOBEC3 has been primarily studied for its role in restricting and inactivating retroviruses and retroelements. In this report, we examine the significance of DND1-APOBEC3 interaction. We found that while human DND1 inhibits miRNA-mediated inhibition of P27, human APOBEC3G is able to counteract this repression and restore miRNA activity. APOBEC3G, by itself, does not affect the 3'-UTR of P27. We found that APOBEC3G also blocks DND1 function to restore miR-372 and miR-206 inhibition through the 3'-UTRs of LATS2 and CX43, respectively. In corollary experiments, we tested whether DND1 affects the viral restriction function or mutator activity of APOBEC3. We found that DND1 does not affect APOBEC3 inhibition of infectivity of exogenous retrovirus HIV (ΔVif) or retrotransposition of MusD. In addition, examination of Ter/Ter;Apobec3-/- mice, lead us to conclude that DND1 does not regulate the mutator activity of APOBEC3 in germ cells. In summary, our results show that APOBEC3 is able to modulate DND1 function to regulate miRNA mediated translational regulation in cells but DND1 does not affect known APOBEC3 function.


Asunto(s)
Citidina Desaminasa/metabolismo , Regulación hacia Abajo , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , Regiones no Traducidas 3' , Desaminasa APOBEC-3G , Animales , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Citidina Desaminasa/genética , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , MicroARNs/genética , Proteínas de Neoplasias/genética , Unión Proteica
13.
PLoS One ; 5(7): e11660, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20652029

RESUMEN

Activation-induced deaminase (AID) initiates somatic hypermutation, gene conversion and class switch recombination by deaminating variable and switch region DNA cytidines to uridines. AID is predominantly cytoplasmic and must enter the nuclear compartment to initiate these distinct antibody gene diversification reactions. Nuclear AID is relatively short-lived, as it is efficiently exported by a CRM1-dependent mechanism and it is susceptible to proteasome-dependent degradation. To help shed light on mechanisms of post-translational regulation, a yeast-based screen was performed to identify AID-interacting proteins. The calcium and integrin binding protein CIB1 was identified by sequencing and the interaction was confirmed by immunoprecipitation experiments. The AID/CIB1 resisted DNase and RNase treatment, and it is therefore unlikely to be mediated by nucleic acid. The requirement for CIB1 in AID-mediated antibody gene diversification reactions was assessed in CIB1-deficient DT40 cells and in knockout mice, but immunoglobulin gene conversion and class switch recombination appeared normal. The DT40 system was also used to show that CIB1 over-expression has no effect on gene conversion and that AID-EGFP subcellular localization is normal. These combined data demonstrate that CIB1 is not required for AID to mediate antibody gene diversification processes. It remains possible that CIB1 has an alternative, a redundant or a subtle non-limiting regulatory role in AID biology.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Citidina Desaminasa/metabolismo , Conversión Génica/genética , Inmunoglobulinas/genética , Animales , Southern Blotting , Proteínas de Unión al Calcio/genética , Línea Celular , Citidina Desaminasa/genética , Humanos , Cambio de Clase de Inmunoglobulina , Inmunoprecipitación , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Unión Proteica
14.
Nucleic Acids Res ; 37(6): 1854-67, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19188259

RESUMEN

Retrotransposons make up over 40% of the mammalian genome. Some copies are still capable of mobilizing and new insertions promote genetic variation. Several members of the APOBEC3 family of DNA cytosine deaminases function to limit the replication of a variety of retroelements, such as the long-terminal repeat (LTR)-containing MusD and Ty1 elements, and that of the non-LTR retrotransposons, L1 and Alu. However, the APOBEC3 genes are limited to mammalian lineages, whereas retrotransposons are far more widespread. This raises the question of what cellular factors control retroelement transposition in species that lack APOBEC3 genes. A strong phylogenetic case can be made that an ancestral activation-induced deaminase (AID)-like gene duplicated and diverged to root the APOBEC3 lineage in mammals. Therefore, we tested the hypothesis that present-day AID proteins possess anti-retroelement activity. We found that AID can inhibit the retrotransposition of L1 through a DNA deamination-independent mechanism. This mechanism may manifest in the cytoplasmic compartment co- or posttranslationally. Together with evidence for AID expression in the ovary, our data combined to suggest that AID has innate immune functions in addition to its integral roles in creating antibody diversity.


Asunto(s)
Citidina Desaminasa/fisiología , Inmunidad Innata , Elementos de Nucleótido Esparcido Largo , Secuencia de Aminoácidos , Animales , Diversidad de Anticuerpos , Línea Celular , Núcleo Celular/enzimología , Citidina Desaminasa/química , Citidina Desaminasa/genética , ADN/metabolismo , Escherichia coli/genética , Humanos , Ratones , Datos de Secuencia Molecular , Mutación , Fosforilación , Ratas , Retroelementos , Homología de Secuencia de Aminoácido , Distribución Tisular , Vertebrados/genética , Levaduras/genética
15.
J Virol ; 82(6): 2652-60, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18184715

RESUMEN

Human APOBEC3G and several other APOBEC3 proteins have been shown to inhibit the replication of a variety of retrotransposons and retroviruses. All of these enzymes can deaminate cytosines within single-strand DNA, but the overall importance of this conserved activity in retroelement restriction has been questioned by reports of deaminase-independent mechanisms. Here, three distinct retroelements, a yeast retrotransposon, Ty1, a murine endogenous retrovirus, MusD, and a lentivirus, human immunodeficiency virus type 1 (HIV-1), were used to evaluate the relative contributions of deaminase-dependent and -independent mechanisms. Although human APOBEC3G can restrict the replication of all three of these retroelements, APOBEC3G lacking the catalytic glutamate (E259Q) was clearly defective. This phenotype was particularly clear in experiments with low levels of APOBEC3G expression. In contrast, purposeful overexpression of APOBEC3G-E259Q was able to cause modest to severe reductions in the replication of Ty1, MusD, and HIV-1(DeltaVif). The importance of these observations was highlighted by data showing that CEM-SS T-cell lines expressing near-physiologic levels of APOBEC3G-E259Q failed to inhibit the replication of HIV-1(DeltaVif), whereas similar levels of wild-type APOBEC3G fully suppressed virus infectivity. Despite the requirement for DNA deamination, uracil DNA glycosylase did not modulate APOBEC3G-dependent restriction of Ty1 or HIV-1(DeltaVif), further supporting prior studies indicating that the major uracil excision repair system of cells is not involved. In conclusion, the absolute requirement for the catalytic glutamate of APOBEC3G in Ty1, MusD, and HIV-1 restriction strongly indicates that DNA cytosine deamination is an essential part of the mechanism.


Asunto(s)
Citidina Desaminasa/metabolismo , VIH-1/fisiología , Desaminasa APOBEC-3G , Secuencia de Bases , Línea Celular , Citidina Desaminasa/genética , Cartilla de ADN , VIH-1/patogenicidad , Humanos , Mutagénesis Sitio-Dirigida , Zinc/metabolismo
17.
Mol Immunol ; 43(8): 1099-108, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16122802

RESUMEN

Activation-induced deaminase (AID) is essential for immunoglobulin gene diversification by the distinct processes of class switch recombination, somatic hypermutation and gene conversion. Most evidence indicates that AID triggers these reactions through the direct deamination of cytosine residues in the DNA. However, AID is predominantly cytoplasmic and the mechanism that directs it to the immunoglobulin loci remains elusive. Like its homolog APOBEC1, which requires at least one additional factor to efficiently edit APOB RNA, other proteins are likely to be required for the proper targeting of AID to the immunoglobulin loci. Here, we show that AID can interact with MDM2, an oncoprotein that shuttles between the nucleus and the cytoplasm and targets p53 for nuclear export and degradation. This interaction mapped to the carboxy-terminal region of AID that harbors a nuclear export sequence, suggesting that MDM2 may be involved in the nucleo-cytoplasmic trafficking of AID. We therefore assessed the role of MDM2 in immunoglobulin gene diversification by disrupting MDM2 in DT40, an avian B cell line that constitutively undergoes AID-dependent immunoglobulin gene diversification. The subcellular localization of AID was unaffected in MDM2-deficient DT40 cells. However, slight hyper-and hypo-conversion phenotypes were caused by MDM2-abrogation and overexpression, respectively. These observations suggested that MDM2 has the capacity to negatively regulate AID. Intriguingly, the same carboxy-terminal residues of AID were recently shown to be inessential for somatic hypermutation and immunoglobulin gene conversion but they were strictly required for class switch recombination.


Asunto(s)
Diversidad de Anticuerpos/genética , Linfocitos B/inmunología , Linfocitos B/metabolismo , Citosina Desaminasa/química , Citosina Desaminasa/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Animales , Linfocitos B/citología , Células Cultivadas , Pollos , Citidina Desaminasa , Conversión Génica/genética , Expresión Génica/genética , Marcación de Gen , Genes de Inmunoglobulinas/genética , Humanos , Ratones , Fenotipo , Unión Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...