Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 188: 110794, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31972441

RESUMEN

Knowing how a drug interacts with cell membranes is important to understand and predict its effects at the molecular level. Therefore, we aimed to study the interaction of nitrofurantoin (NFT), a compound with potential antibiotic and antitumor properties, with lipidic biological interfaces using Langmuir monolayers. We employed the phospholipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS), which were spread on the surface of water to form Langmuir films, to investigate the membrane-drug interactions. The interaction of the drug with the lipid monolayers was evaluated by using surface pressure-area isotherms, surface pressure-time kinetic curves, Brewster angle microscopy (BAM), and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). Nitrofurantoin shifted the isotherms to lower DPPC molecular areas, indicating monolayer condensation, and to higher DPPS molecular areas, indicating monolayer expansion. Meanwhile, BAM images showed the appearance of interfacial aggregates for DPPS, but not for DPPC, in the presence of NFT. PM-IRRAS spectra showed that bands related to methylene stretches changed their relative intensities and maximum position related to their asymmetric and symmetric modes for both lipids. This suggested an alteration of the monolayer packing degree and the conformational order of the lipid alkyl chains, which were related to an increase in configurational order for DPPS, but disorder for DPPC. In conclusion, NFT caused distinctive changes in the thermodynamic, morphological, and structural properties of DPPC and DPPS monolayers, which may be associated with its bioactivity in cellular membranes and other lipidic interfaces of pharmaceutical interest.


Asunto(s)
Antibacterianos/química , Nitrofurantoína/química , Fosfolípidos/química , Membrana Celular/química , Modelos Moleculares , Estructura Molecular , Tamaño de la Partícula , Espectrofotometría Infrarroja , Propiedades de Superficie
2.
Bioorg Chem ; 83: 205-213, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30380449

RESUMEN

Twenty-one isovanillin derivatives were prepared in order to evaluate their cytotoxic properties against the cancer cell lines B16F10-Nex2, HL-60, MCF-7, A2058 and HeLa. Among them, seven derivatives exhibited cytotoxic activity. We observed that for obtaining smaller IC50 values and for increasing the index of selectivity, two structural features are very important when compared with isovanillin (1); a hydroxymethyl group at C-1 and the replacement of the hydroxyl group at C-3 by different alkyl groups. As the lipophilicity of the compounds was changed, we decided to investigate the interaction of the cytotoxic isovallinin derivatives on cell membrane models through Langmuir monolayers by employing the lipids DPPC (1,2-diplamitoyl-sn-glycero-3-phosphocoline) and DPPS (1,2-diplamitoyl-sn-glycero-3-phosphoserine). The structural changes on the scaffold of the compounds modulated the interaction with the phospholipids at the air-water interface. These results were very important to understand the biophysical aspects related to the interaction of the cytotoxic compounds with the cancer cell membranes.


Asunto(s)
Antineoplásicos/farmacología , Benzaldehídos/farmacología , Membranas Artificiales , 1,2-Dipalmitoilfosfatidilcolina/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzaldehídos/síntesis química , Benzaldehídos/química , Línea Celular Tumoral , Humanos , Ratones , Fosfatidilserinas/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...