Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; 20(12): e202301294, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37953436

RESUMEN

Artepillin C is the most studied compound in Brazilian Green Propolis and, along with its acetylated derivative, displays neurotrophic activity on PC12 cells. Specific inhibitors of the trkA receptor (K252a), PI3K/Akt (LY294002), and MAPK/ERK (U0126) signaling pathways were used to investigate the neurotrophic mechanism. The expression of proteins involved in axonal and synaptic plasticity (GAP-43 and Synapsin I) was assessed by western blotting. Additionally, physicochemical properties, pharmacokinetics, and drug-likeness were evaluated by the SwissADME web tool. Both compounds induced neurite outgrowth by activating the NGF-signaling pathways but through different neuronal proteins. Furthermore, in silico analyses showed interesting physicochemical and pharmacokinetic properties of these compounds. Therefore, these compounds could play an important role in axonal and synaptic plasticity and should be further investigated.


Asunto(s)
Própolis , Ratas , Animales , Células PC12 , Própolis/farmacología , Própolis/metabolismo , Neuritas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Brasil , Transducción de Señal , Proyección Neuronal
2.
Molecules ; 21(10)2016 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-27727185

RESUMEN

Snake venoms are composed of a complex mixture of active proteins that induce toxic effects, such as edema, hemorrhage, and death. Lachesis muta has the highest lethality indices in Brazil. In most cases, antivenom fails to neutralize local effects, leading to disabilities in victims. Thus, alternative treatments are under investigation, and plant extracts are promising candidates. The objective of this work was to investigate the ability of crude extracts, fractions, or isolated products of Erythroxylum ovalifolium and Erythroxylum subsessile to neutralize some toxic effects of L. muta venom. All samples were mixed with L. muta venom, then in vivo (hemorrhage and edema) and in vitro (proteolysis, coagulation, and hemolysis) assays were performed. Overall, crude extracts or fractions of Erythroxylum spp. inhibited (20%-100%) toxic effects of the venom, but products achieved an inhibition of 4%-30%. However, when venom was injected into mice before the plant extracts, hemorrhage and edema were not inhibited by the samples. On the other hand, an inhibition of 5%-40% was obtained when extracts or products were given before venom injection. These results indicate that the extracts or products of Erythroxylum spp. could be a promising source of molecules able to treat local toxic effects of envenomation by L. muta venom, aiding in the development of new strategies for antivenom treatment.


Asunto(s)
Mezclas Complejas/farmacología , Magnoliopsida/química , Extractos Vegetales/farmacología , Venenos de Serpiente/antagonistas & inhibidores , Viperidae/metabolismo , Animales , Coagulación Sanguínea/efectos de los fármacos , Mezclas Complejas/química , Edema/inducido químicamente , Edema/tratamiento farmacológico , Hemólisis/efectos de los fármacos , Hemorragia/inducido químicamente , Hemorragia/tratamiento farmacológico , Técnicas In Vitro , Ratones , Extractos Vegetales/química , Venenos de Serpiente/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA