Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(21): eadn0139, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781345

RESUMEN

Fluorescence lifetime imaging microscopy (FLIM) provides detailed information about molecular interactions and biological processes. A major bottleneck for FLIM is image resolution at high acquisition speeds due to the engineering and signal-processing limitations of time-resolved imaging technology. Here, we present single-sample image-fusion upsampling, a data-fusion approach to computational FLIM super-resolution that combines measurements from a low-resolution time-resolved detector (that measures photon arrival time) and a high-resolution camera (that measures intensity only). To solve this otherwise ill-posed inverse retrieval problem, we introduce statistically informed priors that encode local and global correlations between the two "single-sample" measurements. This bypasses the risk of out-of-distribution hallucination as in traditional data-driven approaches and delivers enhanced images compared, for example, to standard bilinear interpolation. The general approach laid out by single-sample image-fusion upsampling can be applied to other image super-resolution problems where two different datasets are available.

2.
Elife ; 132024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712822

RESUMEN

Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signalling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor 1. Overall, we implicate CYRI-B as a mediator of growth and signalling in pancreatic cancer, providing new insights into pathways controlling metastasis.


Pancreatic cancer is an aggressive disease with limited treatment options. It is also associated with high rates of metastasis ­ meaning it spreads to other areas of the body. Environmental pressures, such as a lack of the nutrients metastatic cancer cells need to grow and divide, can change how the cells behave. Understanding the changes that allow cancer cells to respond to these pressures could reveal new treatment options for pancreatic cancer. When nutrients are scarce, metastatic cancer cells can gather molecules and nutrients by capturing large amounts of the fluid that surrounds them using a mechanism called macropinocytosis. They can also migrate to areas of the body with higher nutrient levels, through a process called chemotaxis. This involves cells moving towards areas with higher levels of certain molecules. For example, cancer cells migrate towards high levels of a lipid called lysophosphatidic acid, which promotes their growth and survival. A newly discovered protein known as CYRI-B has recently been shown to regulate how cells migrate and take up nutrients. It also interacts with proteins known to be involved in pancreatic cancer progression. Therefore, Nikolaou et al. set out to investigate whether CYRI-B also plays a role in metastatic pancreatic cancer. Experiments in a mouse model of pancreatic cancer showed that CYRI-B levels were high in pancreatic tumour cells. And when the gene for CYRI-B was removed from the tumour cells, they did not metastasise. Further analysis revealed that CYRI-B controls uptake and processing of nutrients and other signalling molecules through macropinocytosis. In particular, it ensures uptake of the receptor for lysophosphatidic acid, allowing the metastatic cancer cells to migrate. The findings of Nikolaou et al. reveal that CYRI-B is involved in metastasis of cancer cells in a mouse model of pancreatic cancer. This new insight into how metastasis is controlled could help to identify future targets for treatments that aim to prevent pancreatic cancer cells spreading to distant sites.


Asunto(s)
Neoplasias Pancreáticas , Pinocitosis , Receptores del Ácido Lisofosfatídico , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Metástasis de la Neoplasia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética
3.
Nat Commun ; 15(1): 4316, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773095

RESUMEN

As signalling organelles, cilia regulate their G protein-coupled receptor content by ectocytosis, a process requiring localised actin dynamics to alter membrane shape. Photoreceptor outer segments comprise an expanse of folded membranes (discs) at the tip of highly-specialised connecting cilia, into which photosensitive GPCRs are concentrated. Discs are shed and remade daily. Defects in this process, due to mutations, cause retinitis pigmentosa (RP). Whilst fundamental for vision, the mechanism of photoreceptor disc generation is poorly understood. Here, we show membrane deformation required for disc genesis is driven by dynamic actin changes in a process akin to ectocytosis. We show RPGR, a leading RP gene, regulates actin-binding protein activity central to this process. Actin dynamics, required for disc formation, are perturbed in Rpgr mouse models, leading to aborted membrane shedding as ectosome-like vesicles, photoreceptor death and visual loss. Actin manipulation partially rescues this, suggesting the pathway could be targeted therapeutically. These findings help define how actin-mediated dynamics control outer segment turnover.


Asunto(s)
Actinas , Proteínas del Ojo , Retinitis Pigmentosa , Animales , Actinas/metabolismo , Ratones , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Cilios/metabolismo , Humanos , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Membrana Celular/metabolismo
4.
Open Biol ; 14(3): 230376, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38503329

RESUMEN

Fascin-1-mediated actin-bundling activity is central to the generation of plasma membrane protrusions required for cell migration. Dysregulated formation of cellular protrusions is observed in metastatic cancers, where they are required for increased invasiveness, and is often correlated with increased Fascin-1 abundance. Therefore, there is interest in generating therapeutic Fascin-1 inhibitors. We present the identification of Nb 3E11, a nanobody inhibitor of Fascin-1 actin-bundling activity and filopodia formation. The crystal structure of the Fascin-1/Nb 3E11 complex reveals the structural mechanism of inhibition. Nb 3E11 occludes an actin-binding site on the third ß-trefoil domain of Fascin-1 that is currently not targeted by chemical inhibitors. Binding of Nb 3E11 to Fascin-1 induces a conformational change in the adjacent domains to stabilize Fascin-1 in an inhibitory state similar to that adopted in the presence of small-molecule inhibitors. Nb 3E11 could be used as a tool inhibitor molecule to aid in the development of Fascin-1 targeted therapeutics.


Asunto(s)
Actinas , Proteínas Portadoras , Proteínas de Microfilamentos , Seudópodos , Actinas/metabolismo , Seudópodos/metabolismo , Unión Proteica , Movimiento Celular
5.
Cells ; 13(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391912

RESUMEN

Platelet function at vascular injury sites is tightly regulated through the actin cytoskeleton. The Wiskott-Aldrich syndrome protein-family verprolin-homologous protein (WAVE)-regulatory complex (WRC) activates lamellipodia formation via ARP2/3, initiated by GTP-bound RAC1 interacting with the WRC subunit CYFIP1. The protein FAM49b (Family of Unknown Function 49b), also known as CYRI-B (CYFIP-Related RAC Interactor B), has been found to interact with activated RAC1, leading to the negative regulation of the WRC in mammalian cells. To investigate the role of FAM49b in platelet function, we studied platelet-specific Fam49b-/--, Cyfip1-/--, and Cyfip1/Fam49b-/--mice. Platelet counts and activation of Fam49b-/- mice were comparable to those of control mice. On fully fibrinogen-coated surfaces, Fam49b-/--platelets spread faster with an increased mean projected cell area than control platelets, whereas Cyfip1/Fam49b-/--platelets did not form lamellipodia, phenocopying the Cyfip1-/--platelets. However, Fam49b-/--platelets often assumed a polarized shape and were more prone to migrate on fibrinogen-coated surfaces. On 2D structured micropatterns, however, Fam49b-/--platelets displayed reduced spreading, whereas spreading of Cyfip1-/-- and Cyfip1/Fam49b-/--platelets was enhanced. In summary, FAM49b contributes to the regulation of morphology and migration of spread platelets, but to exert its inhibitory effect on actin polymerization, the functional WAVE complex must be present.


Asunto(s)
Proteínas Portadoras , Proteína de Unión al GTP rac1 , Animales , Ratones , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Plaquetas/metabolismo , Proteínas Portadoras/metabolismo , Fibrinógeno/metabolismo , Mamíferos/metabolismo , Proteína de Unión al GTP rac1/metabolismo
6.
J Pathol ; 262(4): 454-466, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38229581

RESUMEN

MAP4K4 is a serine/threonine kinase of the STE20 family involved in the regulation of actin cytoskeleton dynamics and cell motility. It has been proposed as a target of angiogenesis and inhibitors show potential in cardioprotection. MAP4K4 also mediates cell invasion in vitro, is overexpressed in various types of cancer, and is associated with poor patient prognosis. Recently, MAP4K4 has been shown to be overexpressed in pancreatic cancer, but its role in tumour initiation, progression, and metastasis is unknown. Here, using the KrasG12D Trp53R172H Pdx1-Cre (KPC) mouse model of pancreatic ductal adenocarcinoma (PDAC), we show that deletion of Map4k4 drives tumour initiation and progression. Moreover, we report that the acceleration of tumour onset is also associated with an overactivation of ERK and AKT, two major downstream effectors of KRAS, in vitro and in vivo. In contrast to the accelerated tumour onset caused by loss of MAP4K4, we observed a reduction in metastatic burden with both the KPC model and in an intraperitoneal transplant assay indicating a major role of MAP4K4 in metastatic seeding. In summary, our study sheds light on the dichotomous role of MAP4K4 in the initiation of PDAC onset, progression, and metastatic dissemination. It also identifies MAP4K4 as a possible druggable target against pancreatic cancer spread, but with the caveat that targeting MAP4K4 might accelerate early tumorigenesis. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sistema de Señalización de MAP Quinasas , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina , Péptidos y Proteínas de Señalización Intracelular/metabolismo
7.
Cell Rep ; 42(12): 113554, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38100355

RESUMEN

Cell invasion is a multi-step process, initiated by the acquisition of a migratory phenotype and the ability to move through complex 3D extracellular environments. We determine the composition of cell-matrix adhesion complexes of invasive breast cancer cells in 3D matrices and identify an interaction complex required for invasive migration. ßPix and myosin18A (Myo18A) drive polarized recruitment of non-muscle myosin 2A (NM2A) to adhesion complexes at the tips of protrusions. Actomyosin force engagement then displaces the Git1-ßPix complex from paxillin, establishing a feedback loop for adhesion maturation. We observe active force transmission to the nucleus during invasive migration that is needed to pull the nucleus forward. The recruitment of NM2A to adhesions creates a non-muscle myosin isoform gradient, which extends from the protrusion to the nucleus. We postulate that this gradient facilitates coupling of cell-matrix interactions at the protrusive cell front with nuclear movement, enabling effective invasive migration and front-rear cell polarity.


Asunto(s)
Citoesqueleto de Actina , Actomiosina , Retroalimentación , Movimiento Celular/fisiología , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Adhesión Celular/fisiología , Matriz Extracelular/metabolismo
8.
Pathol Res Pract ; 251: 154836, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832352

RESUMEN

BACKGROUND: The actin regulatory protein fascin (FSCN1) and epithelial mesenchymal transition (EMT) transcription factor (TF) SLUG/SNAI2 have been shown to be expressed in PDAC and its precursor lesions (pancreatic intraepithelial neoplasia (PanIN), graded 1-3) in in vitro and murine in vivo studies. Our aim was to investigate the expression of FSCN1 and EMT-TFs and their association with survival in human PanIN and PDAC. METHODS: Expression was investigated in silico using TCGA PanCancer Atlas data (177 PDAC samples with mRNA data) and immunohistochemical staining of a tissue microarray (TMA) (59 PDAC patients). RESULTS: High FSCN1 expression was associated with poorer overall survival (p = 0.02) in the TCGA data. EMT-TF expression was not associated with survival, however FSCN1 expression correlated with that of the EMT-TFs SLUG/SNAI2 (rho = 0.49, p < 0.001) and TWIST1 (rho = 0.52, p < 0.001). TMA IHC showed low expression of SNAI2 and TWIST1 in normal ductal epithelium, while FSCN1 was not expressed. SNAI2 increased slightly in PanIN1-2, then decreased in higher grade lesions. TWIST1 increased in PanIN2-3 and was retained in PDAC. FSCN1 was increasingly expressed from PanIN2 onwards. SNAI2 and TWIST1 expression positively correlated in all grades of PanIN and PDAC (rho = 0.52, p < 0.001). FSCN1 correlated positively with SNAI2 in PanIN1 (rho = 0.56, p < 0.01). CONCLUSIONS: Increased expression of EMT-TFs in low-grade PanIN followed by FSCN1 in PanIN3 and PDAC suggests EMT-TFs may trigger FSCN1 expression and are potential early diagnostic markers. FSCN1 expression correlated with overall survival in PDAC and may have value as a prognostic marker.


Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/patología , Proteínas Portadoras , Transición Epitelial-Mesenquimal/genética , Proteínas de Microfilamentos/metabolismo , Neoplasias Pancreáticas/patología , Factores de Transcripción/metabolismo
9.
Sci Rep ; 13(1): 9526, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308549

RESUMEN

The platelet specific integrin αIIbß3 mediates platelet adhesion, aggregation and plays a central role in thrombosis and hemostasis. In resting platelets, αIIbß3 is expressed on the membrane surface and in intracellular compartments. Upon activation, the number of surface-expressed αIIbß3 is increased by the translocation of internal granule pools to the plasma membrane. The WASH complex is the major endosomal actin polymerization-promoting complex and has been implicated in the generation of actin networks involved in endocytic trafficking of integrins in other cell types. The role of the WASH complex and its subunit Strumpellin in platelet function is still unknown. Here, we report that Strumpellin-deficient murine platelets display an approximately 20% reduction in integrin αIIbß3 surface expression. While exposure of the internal αIIbß3 pool after platelet activation was unaffected, the uptake of the αIIbß3 ligand fibrinogen was delayed. The number of platelet α-granules was slightly but significantly increased in Strumpellin-deficient platelets. Quantitative proteome analysis of isolated αIIbß3-positive vesicular structures revealed an enrichment of protein markers, which are associated with the endoplasmic reticulum, Golgi complex and early endosomes in Strumpellin-deficient platelets. These results point to a so far unidentified role of the WASH complex subunit Strumpellin in integrin αIIbß3 trafficking in murine platelets.


Asunto(s)
Integrina alfa2 , Integrina beta3 , Péptidos y Proteínas de Señalización Intracelular , Animales , Ratones , Plaquetas/metabolismo , Integrina alfa2/metabolismo , Integrina beta3/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Megacariocitos/metabolismo , Ratones Noqueados
10.
Methods Mol Biol ; 2645: 189-209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37202620

RESUMEN

Renewable and scalable human liver tissue platforms are a powerful tool to study organ physiology and model diseases, such as cancer. Stem cell-derived models provide an alternative to cell lines, which can display limited relevance to primary cells and tissue. Historically, two-dimensional (2D) cultures have been used to model liver biology as they are easy to scale and deploy. However, 2D liver models lack functional diversity and phenotypic stability in long-term culture. To address those issues, protocols for generating the three-dimensional (3D) tissue aggregates have been developed. Here, we describe a methodology to generate 3D liver spheres from pluripotent stem cells. Liver spheres are composed of three key liver cell types (hepatic progenitor cells, endothelial cells, and hepatic stellate cells) and have been used to study human cancer cell metastasis.


Asunto(s)
Neoplasias , Células Madre Pluripotentes , Humanos , Células Endoteliales , Técnicas de Cultivo de Célula/métodos , Hígado , Hepatocitos/metabolismo , Diferenciación Celular , Neoplasias/metabolismo
11.
Nat Cell Biol ; 25(3): 375-376, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36918690

Asunto(s)
Actinas , Citoesqueleto
12.
Biochem Soc Trans ; 51(2): 579-585, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36892409

RESUMEN

Cells use actin-based protrusions not only to migrate, but also to sample their environment and take up liquids and particles, including nutrients, antigens and pathogens. Lamellipodia are sheet-like actin-based protrusions involved in sensing the substratum and directing cell migration. Related structures, macropinocytic cups, arise from lamellipodia ruffles and can take in large gulps of the surrounding medium. How cells regulate the balance between using lamellipodia for migration and macropinocytosis is not yet well understood. We recently identified CYRI proteins as RAC1-binding regulators of the dynamics of lamellipodia and macropinocytic events. This review discusses recent advances in our understanding of how cells regulate the balance between eating and walking by repurposing their actin cytoskeletons in response to environmental cues.


Asunto(s)
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Movimiento Celular , Citoesqueleto de Actina/metabolismo , Estructuras de la Membrana Celular/metabolismo , Seudópodos/metabolismo , Caminata
13.
Pigment Cell Melanoma Res ; 36(1): 71-77, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36412082

RESUMEN

Genetic approaches that allow lineage tracing are essential to our future understanding of melanocytes and melanoma. To date, the approaches used to label melanocytes in mice have relied on random integration of transgenes driven by the promoters of the Tyrosinase and Dopachrome tautomerase genes, knock-in to the Dopachrome tautomerase locus or knock-in to the Mlana locus in a bacterial artificial chromosome. These strategies result in expression in other tissues such as telencephalon and other cell types such as nerves. Here we used homologous recombination in mouse embryonic stem cells to generate a targeted multicistronic allele of the Pmel locus that drives melanocyte-specific expression of CreERT2, nuclear localised H2B-Cerulean and membrane localised marcks-mKate2 allowing live imaging of melanocytes and activation of other conditional alleles. We combined this allele with R26R-EYFP mice allowing induction of EYFP expression on administration of tamoxifen or its metabolite 4-OHT. The fluorescent proteins H2B-Cerulean and marcks-mKate2 label the cell nucleus and plasma membrane respectively allowing live imaging and FACS isolation of melanoblasts and melanocytes as well as serving to provide an internal control allowing estimation of recombination efficiency after administration of tamoxifen. We demonstrate the utility of the transgene in embryonic and adult tissues.


Asunto(s)
Melanocitos , Melanoma , Ratones , Animales , Ratones Transgénicos , Alelos , Melanocitos/metabolismo , Melanoma/metabolismo , Tamoxifeno/metabolismo , Tamoxifeno/farmacología
14.
J Cell Sci ; 135(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36546396

RESUMEN

Pancreatic cancer is a deadly and highly metastatic disease, although how metastatic lesions establish is not fully understood. A key feature of pancreatic tumours is extensive fibrosis and deposition of extracellular matrix (ECM). While pancreatic cancer cells are programmed by stimuli derived from a stiff ECM, metastasis requires loss of attachment and adaptation to a softer microenvironment at distant sites. Growing evidence suggests that stiff ECM influences pancreatic cancer cell behaviour. Here, we argue that this influence is reversible and that pancreatic cancer cells can be reprogrammed upon sensing soft substrates. Using engineered polyacrylamide hydrogels with tuneable mechanical properties, we show that collagen VI is specifically upregulated in pancreatic cancer cells on soft substrates, due to a lack of integrin engagement. Furthermore, the expression of collagen VI is inversely correlated with mechanosensing and activity of YAP (also known as YAP1), which might be due to a direct or indirect effect on transcription of genes encoding collagen VI. Collagen VI supports migration in vitro and metastasis formation in vivo. Metastatic nodules formed by pancreatic cancer cells lacking Col6a1 display stromal cell-derived collagen VI deposition, suggesting that collagen VI derived from either cancer cells or the stroma is an essential component of the metastatic niche. This article has an associated First Person interview with Vasileios Papalazarou, joint first author of the paper.


Asunto(s)
Colágeno , Neoplasias Pancreáticas , Humanos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Integrinas/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
15.
Bio Protoc ; 12(7): e4367, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35530513

RESUMEN

Macropinocytosis is an evolutionarily conserved process, which is characterized by the formation of membrane ruffles and the uptake of extracellular fluid. We recently demonstrated a role for CYFIP-related Rac1 Interactor (CYRI) proteins in macropinocytosis. High-molecular weight dextran (70kDa or higher) has generally been used as a marker for macropinocytosis because it is too large to fit in smaller endocytic vesicles, such as those of clathrin or caveolin-mediated endocytosis. Through the use of an image-based dextran uptake assay, we showed that cells lacking CYRI proteins internalise less dextran compared to their wild-type counterparts. Here, we will describe a step-by-step experimentation procedure to detect internalised dextran in cultured cells, and an image pipeline to analyse the acquired images, using the open-access software ImageJ/Fiji. This protocol is detailed yet simple and easily adaptable to different treatment conditions, and the analysis can also be automated for improved processing speed.

16.
Nat Cell Biol ; 23(11): 1111-1112, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34737441
17.
Cell Rep ; 36(11): 109689, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525350

RESUMEN

Assessing drug response within live native tissue provides increased fidelity with regards to optimizing efficacy while minimizing off-target effects. Here, using longitudinal intravital imaging of a Rac1-Förster resonance energy transfer (FRET) biosensor mouse coupled with in vivo photoswitching to track intratumoral movement, we help guide treatment scheduling in a live breast cancer setting to impair metastatic progression. We uncover altered Rac1 activity at the center versus invasive border of tumors and demonstrate enhanced Rac1 activity of cells in close proximity to live tumor vasculature using optical window imaging. We further reveal that Rac1 inhibition can enhance tumor cell vulnerability to fluid-flow-induced shear stress and therefore improves overall anti-metastatic response to therapy during transit to secondary sites such as the lung. Collectively, this study demonstrates the utility of single-cell intravital imaging in vivo to demonstrate that Rac1 inhibition can reduce tumor progression and metastases in an autochthonous setting to improve overall survival.


Asunto(s)
Técnicas Biosensibles/métodos , Neoplasias de la Mama/patología , Proteína de Unión al GTP rac1/metabolismo , Aminoquinolinas/farmacología , Animales , Neoplasias de la Mama/diagnóstico por imagen , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Transferencia Resonante de Energía de Fluorescencia , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Pirimidinas/farmacología , Resistencia al Corte , Transducción de Señal , Proteína de Unión al GTP rac1/antagonistas & inhibidores
18.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34264264

RESUMEN

The ARP2/3 complex promotes branched actin networks, but the importance of specific subunit isoforms is unclear. In this issue, Galloni, Carra, et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202102043) show that MICAL2 mediates methionine oxidation of ARP3B, thus destabilizing ARP2/3 complexes and leading to disassembly of branched actin filaments.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Actinas , Citoesqueleto de Actina , Complejo 2-3 Proteico Relacionado con la Actina/genética
19.
J Cell Biol ; 220(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34165494

RESUMEN

The Scar/WAVE complex drives actin nucleation during cell migration. Interestingly, the same complex is important in forming membrane ruffles during macropinocytosis, a process mediating nutrient uptake and membrane receptor trafficking. Mammalian CYRI-B is a recently described negative regulator of the Scar/WAVE complex by RAC1 sequestration, but its other paralogue, CYRI-A, has not been characterized. Here, we implicate CYRI-A as a key regulator of macropinosome formation and integrin internalization. We find that CYRI-A is transiently recruited to nascent macropinosomes, dependent on PI3K and RAC1 activity. CYRI-A recruitment precedes RAB5A recruitment but follows sharply after RAC1 and actin signaling, consistent with it being a local inhibitor of actin polymerization. Depletion of both CYRI-A and -B results in enhanced surface expression of the α5ß1 integrin via reduced internalization. CYRI depletion enhanced migration, invasion, and anchorage-independent growth in 3D. Thus, CYRI-A is a dynamic regulator of macropinocytosis, functioning together with CYRI-B to regulate integrin trafficking.


Asunto(s)
Endosomas/metabolismo , Integrina alfa5beta1/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Mitocondriales/genética , Pinocitosis/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Actinas/genética , Actinas/metabolismo , Animales , Células COS , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Chlorocebus aethiops , Endosomas/patología , Endosomas/ultraestructura , Regulación de la Expresión Génica , Células HEK293 , Humanos , Integrina alfa5beta1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mitocondriales/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Polimerizacion , Transporte de Proteínas , Transducción de Señal , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
20.
Dis Model Mech ; 14(4)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33973625

RESUMEN

Dissemination of malignant cells from primary tumours to metastatic sites is a key step in cancer progression. Disseminated tumour cells preferentially settle in specific target organs, and the success of such metastases depends on dynamic interactions between cancer cells and the microenvironments they encounter at secondary sites. Two emerging concepts concerning the biology of metastasis are that organ-specific microenvironments influence the fate of disseminated cancer cells, and that cancer cell-extracellular matrix interactions have important roles at all stages of the metastatic cascade. The extracellular matrix is the complex and dynamic non-cellular component of tissues that provides a physical scaffold and conveys essential adhesive and paracrine signals for a tissue's function. Here, we focus on how extracellular matrix dynamics contribute to liver metastases - a common and deadly event. We discuss how matrix components of the healthy and premetastatic liver support early seeding of disseminated cancer cells, and how the matrix derived from both cancer and liver contributes to the changes in niche composition as metastasis progresses. We also highlight the technical developments that are providing new insights into the stochastic, dynamic and multifaceted roles of the liver extracellular matrix in permitting and sustaining metastasis. An understanding of the contribution of the extracellular matrix to different stages of metastasis may well pave the way to targeted and effective therapies against metastatic disease.


Asunto(s)
Matriz Extracelular/metabolismo , Neoplasias Hepáticas/patología , Modelos Biológicos , Animales , Transición Epitelial-Mesenquimal , Humanos , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...